Clinical Trials Logo

Secondary Acute Myeloid Leukemia clinical trials

View clinical trials related to Secondary Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT01159067 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Deferasirox for Treating Patients Who Have Undergone Allogeneic Stem Cell Transplant and Have Iron Overload

Start date: July 2010
Phase: Phase 2
Study type: Interventional

RATIONALE: Low dose deferasirox may be safe and effective in treating patients who have undergone hematopoietic stem cell transplant and have iron overload. PURPOSE: This pilot clinical trial studies safety and tolerability of deferasirox in hematopoietic stem cell transplant recipients who have iron overload. Effect of low dose deferasirox on labile plasma iron is also examined.

NCT ID: NCT01076270 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

Plerixafor and Filgrastim For Mobilization of Donor Peripheral Blood Stem Cells Before A Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: June 2010
Phase: N/A
Study type: Interventional

RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies

NCT ID: NCT01028716 Terminated - Clinical trials for Myelodysplastic Syndrome

Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: May 19, 2010
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.

NCT ID: NCT00387426 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Sunitinib in Treating Patients With Idiopathic Myelofibrosis

Start date: September 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well sunitinib works in treating patients with idiopathic myelofibrosis. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells.

NCT ID: NCT00301769 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

SJG-136 in Treating Patients With Relapsed or Refractory Acute Leukemia, Myelodysplastic Syndromes, Blastic Phase Chronic Myelogenous Leukemia, or Chronic Lymphocytic Leukemia

Start date: December 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of SJG-136 in treating patients with relapsed or refractory acute leukemia, myelodysplastic syndromes, blastic phase chronic myelogenous leukemia, or chronic lymphocytic leukemia. Drugs used in chemotherapy, such as SJG-136, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.

NCT ID: NCT00119366 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: May 2003
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and best dose of iodine I 131 monoclonal antibody BC8 when given together with fludarabine phosphate, total-body irradiation, and donor stem cell transplant followed by cyclosporine and mycophenolate mofetil in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has spread to other places in the body and usually cannot be cured or controlled with treatment. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving fludarabine phosphate and total-body irradiation before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody together with donor stem cell transplant, cyclosporine, and mycophenolate mofetil may be an effective treatment for advanced acute myeloid leukemia or myelodysplastic syndromes.

NCT ID: NCT00096148 Terminated - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: October 2004
Phase: Phase 2
Study type: Interventional

Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Bevacizumab may stop the growth of cancer by stopping blood flow to the leukemic cells in the bone marrow. Giving idarubicin and cytarabine with bevacizumab may kill more cancer cells. It is not yet know whether giving idarubicin together with cytarabine is more effective with or without bevacizumab in treating acute myeloid leukemia. This randomized phase II trial is studying how well giving idarubicin and cytarabine together with bevacizumab works compared to idarubicin and cytarabine alone in treating patients with newly diagnosed acute myeloid leukemia

NCT ID: NCT00052598 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Therapeutic Allogeneic Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

Start date: September 2002
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studies the side effects of giving therapeutic allogeneic lymphocytes together with aldesleukin and to see how well it works in treating patients with high-risk or recurrent myeloid leukemia after undergoing donor stem cell transplant. Biological therapies, such as therapeutic autologous lymphocytes, may stimulate the immune system in different ways and stop cancer cells from growing. Aldesleukin may stimulate the white blood cells to kill cancer cells. Giving therapeutic autologous lymphocytes together with aldesleukin may kill more cancer cells

NCT ID: NCT00049582 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

Start date: September 2002
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of decitabine in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die.

NCT ID: NCT00042796 Terminated - Clinical trials for Secondary Acute Myeloid Leukemia

Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

Start date: December 2002
Phase: Phase 1
Study type: Interventional

Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. This phase I trial is studying the side effects and best dose of decitabine in treating children with relapsed or refractory acute myeloid leukemia or acute lymphoblastic leukemia