Clinical Trials Logo

Sarcoma, Synovial clinical trials

View clinical trials related to Sarcoma, Synovial.

Filter by:

NCT ID: NCT03651375 Active, not recruiting - Sarcoma Clinical Trials

Hypofractionated Radiotherapy With Sequential Chemotherapy in Marginally Resectable Soft Tissue Sarcomas of Extremities or Trunk Wall

UN-RESARC
Start date: February 11, 2017
Phase: Phase 2
Study type: Interventional

After a screening, which consists of biopsy, physical examination, initial diffusion-weighted magnetic resonance imaging (DWI-MRI), body computed tomography (CT) scan, blood tests and case analysis on Multidisciplinary Team (MDT) meeting, a patient will receive the first course of chemotherapy - doxorubicin 75 mg/sqm and ifosfamide 10 g/sqm (AI regimen) with prophylactic mesna. Then a patient will be irradiated 5x5 Gy and after radiotherapy he or she will receive two courses of AI within 4-6 weeks, depending on the tolerance. Then the response analysis in DWI-MRI and toxicity assessment and will be performed. On the second MDT meeting, a final decision about resectability of the tumor will be made. In case of resectability, a patient will be referred to surgery.

NCT ID: NCT03638206 Recruiting - Colorectal Cancer Clinical Trials

Autologous CAR-T/TCR-T Cell Immunotherapy for Malignancies

Start date: March 1, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

This is a single arm, open-label, uni-center, phase I-II study to evaluate the safety and effectiveness of CAR-T/TCR-T cell immunotherapy in treating with different malignancies patients.

NCT ID: NCT03618381 Recruiting - Neuroblastoma Clinical Trials

EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Start date: June 18, 2019
Phase: Phase 1
Study type: Interventional

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

NCT ID: NCT03604783 Terminated - Sarcoma Clinical Trials

Phase 1, First-in-human Study of Oral TP-1287 in Patients With Advanced Solid Tumors

Start date: December 26, 2018
Phase: Phase 1
Study type: Interventional

TP-1287 is an oral phosphate prodrug of the CDK9 inhibitor, alvocidib. This is a Phase 1, open-label, dose-escalation, dose-expansion, safety, pharmacokinetics, and pharmacodynamic study, with a purpose of determining the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of oral TP-1287 in patients with advanced metastatic or progressive solid tumors who are refractory to, or intolerant of, established therapy known to provide clinical benefit for their condition.

NCT ID: NCT03520959 Terminated - Cancer Clinical Trials

A Phase 3, Randomized, Double-blind, Placebo-controlled Study For Subjects With Locally-advanced Unresectable or Metastatic Synovial Sarcoma (V943-003, IMDZ-04-1702)

Start date: September 18, 2018
Phase: Phase 3
Study type: Interventional

To assess if the CMB305 vaccine regimen may help the body's immune system to slow or stop the growth of synovial sarcoma tumor and improve survival.

NCT ID: NCT03450122 Completed - Clinical trials for HLA-A*0201 Positive Cells Present

Modified T Cells, Chemotherapy, and Aldesleukin With or Without LV305 and CMB305 in Treating Participants With Advanced or Recurrent Sarcoma

Start date: September 13, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies how well autologous NY-ESO-1-specific CD8-positive T lymphocytes (modified T lymphocytes [T cells]), chemotherapy, and aldesleukin with or without dendritic cell-targeting lentiviral vector ID-LV305 (LV305) and immunotherapeutic combination product CMB305 (CMB305) work in treating participants with sarcoma that has spread to other places in the body (advanced) or that has come back (recurrent). Modified T cells used in this study are taken from participants, are changed in a laboratory, and may "kill" some types of tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide may help the body get ready to receive the modified T cells. Interleukins, such as aldesleukin, are proteins made by white blood cells and other cells in the body and may help regulate immune response. LV305 and CMB305 may help stimulate the immune system. Giving modified T cells, chemotherapy, aldesleukin, LV305, and CMB305 may work better in treating participants with sarcoma.

NCT ID: NCT03399448 Terminated - Multiple Myeloma Clinical Trials

NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells)

Start date: September 5, 2018
Phase: Phase 1
Study type: Interventional

This is a first-in-human trial proposed to test HLA-A*0201 restricted NY-ESO-1 redirected T cells with edited endogenous T cell receptor and PD-1.

NCT ID: NCT03250325 Completed - Synovial Sarcoma Clinical Trials

Study of TBI-1301 (NY-ESO-1 T Cell Receptor Gene Transduced Autologous T Lymphocytes) in Patients With Synovial Sarcoma

Start date: September 20, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the safety and the efficacy of TBI-1301 for NY-ESO-1 expressing synovial sarcoma when administered following cyclophosphamide pre-treatment.

NCT ID: NCT03132922 Active, not recruiting - Ovarian Cancer Clinical Trials

MAGE-A4ᶜ¹º³²T for Multi-Tumor

Start date: May 15, 2017
Phase: Phase 1
Study type: Interventional

This study will investigate the safety and tolerability of MAGE-A4ᶜ¹º³²T cell therapy in subjects who have the appropriate HLA-A2 tissue marker and whose urinary bladder, melanoma, head and neck, ovarian, non-small cell lung, esophageal, gastric, synovial sarcoma, or myxoid/round call liposarcoma (MRCLS) tumor has the MAGE-A4 protein expressed. This study will take a subject's T cells and give them a T cell receptor protein that recognizes and attacks the tumors. This study has a substudy component that will investigate the safety and tolerability of MAGE-A4c1032T cell therapy in combination with low dose radiation in up to 10 subjects.

NCT ID: NCT03063632 Completed - Clinical trials for Recurrent Mycosis Fungoides and Sezary Syndrome

Testing the Combination of Two Experimental Drugs MK-3475 (Pembrolizumab) and Interferon-gamma for the Treatment of Mycosis Fungoides and Sézary Syndrome and Advanced Synovial Sarcoma

Start date: December 14, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well pembrolizumab and interferon gamma-1b work in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome that has come back (relapsed) or has not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Interferon gamma-1b may boost the immune system activity. Giving pembrolizumab and interferon gamma-1b together may work better in treating patients with stage IB-IVB mycosis fungoides and Sezary syndrome.