Clinical Trials Logo

Rhabdoid Tumor clinical trials

View clinical trials related to Rhabdoid Tumor.

Filter by:

NCT ID: NCT04315883 Recruiting - Clinical trials for Hepatocellular Carcinoma

Yttrium-90 (TARE-Y90) in Children, Adolescents, and Young Adults With Liver Tumors

Start date: February 11, 2021
Phase:
Study type: Observational

This study will be performed to evaluate the Clinical Outcomes and Quality of Life after Transarterial Radioembolization with Yttrium-90 (TARE-Y90) in Children, Adolescents, and Young Adults with Liver Tumors. The treatment and techniques used here are well established in adults. The purpose of this study is to evaluate: 1. the response to treatment and clinical outcomes of treatment with TARE Y-90 as part of standard therapy and 2. to assess the change in the patient's quality of life before, during and after treatment with TARE-Y90

NCT ID: NCT04185038 Recruiting - Glioma Clinical Trials

Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors

Start date: December 11, 2019
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.

NCT ID: NCT03959800 Recruiting - Clinical trials for Hepatocellular Carcinoma

Molecular Basis of Pediatric Liver Cancer

Start date: June 22, 2015
Phase:
Study type: Observational

The purpose of this retrospective and prospective project is to understand the molecular and genetic basis of liver cancer of childhood. Understanding the molecular and genetic bases of liver cancers can offer a better classification based on tumor biology, mechanisms and predisposition.

NCT ID: NCT03618381 Recruiting - Neuroblastoma Clinical Trials

EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Start date: June 18, 2019
Phase: Phase 1
Study type: Interventional

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

NCT ID: NCT03213652 Recruiting - Clinical trials for Malignant Solid Neoplasm

Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Start date: April 17, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

NCT ID: NCT03050268 Recruiting - Pancreatic Cancer Clinical Trials

Familial Investigations of Childhood Cancer Predisposition

SJFAMILY
Start date: April 6, 2017
Phase:
Study type: Observational

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: - Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: - Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

NCT ID: NCT00898755 Recruiting - Lymphoma Clinical Trials

Collecting and Storing Tissue From Young Patients With Cancer

Start date: March 5, 2007
Phase:
Study type: Observational

This laboratory study is collecting and storing tissue, blood, and bone marrow samples from young patients with cancer. Collecting and storing samples of tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer.

NCT ID: NCT00898365 Recruiting - Clinical trials for Renal Cell Carcinoma

Study of Kidney Tumors in Younger Patients

Start date: February 27, 2006
Phase:
Study type: Observational

This research trial studies kidney tumors in younger patients. Collecting and storing samples of tumor tissue, blood, and urine from patients with cancer to study in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.

NCT ID: NCT00897286 Recruiting - Clinical trials for Brain and Central Nervous System Tumors

Study of Stored Tumor Samples in Young Patients With Brain Tumors

Start date: November 30, 2004
Phase:
Study type: Observational

This laboratory study is looking at stored tumor samples in young patients with brain tumors. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer.