Clinical Trials Logo

Clinical Trial Details — Status: Suspended

Administrative data

NCT number NCT04026217
Other study ID # 2745
Secondary ID
Status Suspended
Phase
First received
Last updated
Start date May 27, 2019
Est. completion date January 31, 2024

Study information

Verified date January 2024
Source Azienda Sanitaria-Universitaria Integrata di Udine
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Acute hypoxemic respiratory failure due to parenchymal disfunction is one of the main complications of immunocompromised hematological patients. Mechanical ventilation is frequently needed and diaphragm activity has to be assessed not to worsen ventilator-induced lung injury.


Description:

Acute hypoxemic respiratory failure due to parenchymal disfunction is one of the main complications of immunocompromised hematological patients. In these cohort of patients mechanical ventilation is frequently needed in order to restore oxygenation and normocapnia. Since every positive-pressure ventilation regimen may potentially determine pulmonary complications, due to alteration in pressure and volume lung homeostasis and diaphragm activity, also diaphragm function has to be assessed not to worsen ventilator-induced lung injury (VILI). Main targets of VILI are pulmonary interstitium and diaphragm. Pulmonary interstitium is frequently involved in different mechanism of injury, that derive both from induced tidal volume and positive end expiratory pressure (PEEP). Indeed, large tidal volumes generated during assisted spontaneous breathing may configure non-protective ventilation regimens and the so called "pendelluft phenomenon", that is the intrinsic flow of air within the lung from nondependent to dependent regions without changes in tidal volume, may affect inadequate PEEP values. Positive-pressure ventilation may also alter diaphragm activity. Recent data show that diaphragm disfunction, considered as an enhanced or reduced thickening fraction, occurs in about 65% of patients undergoing mechanical ventilation. Since the potential harm of positive-pressure ventilation, the optimization of mechanical ventilation is pivotal to ensure an adequate time-to-recovery without concurring to the onset of further lung and diaphragmatic injury. Neurally Adjusted Ventilatory Assist (NAVA) is a recent modality of mechanical ventilation that delivers ventilatory assistance according to the respiratory effort of the patient, measured by electrical activity of the diaphragm (EAdi). NAVA works proportionally with EAdi values, ensuring a better neuroventilatory efficiency compared to other mechanical ventilation modes and also reducing patient-ventilator asynchrony. According to these features NAVA protocol may be useful in preserving gas exchanges and diaphragm function both in invasive and non-invasive ventilation. Therefore the evaluation of basal diaphragm activity, the choice of the device for oxygen support administration and the setting of ventilatory parameters may influence hospital stay and outcome of patients affected by acute hypoxemic respiratory failure. The aim of this study is to evaluate the basal diaphragm activity of acute hypoxemic respiratory failure patients admitted in Intensive Care Unit (ICU) and to record diaphragm activity modifications during the ICU stay in relation to the optimization of medical therapy and, if necessary, according to the need of ventilatory support (invasive or non-invasive ventilation delivered with NAVA protocol). This study intends to register also daily diaphragm thickening fraction, daily arterial blood gas analysis, failure frequency of non-invasive ventilation, frequency of tracheal intubation, length of mechanical ventilation, length of hospital stay and hospital mortality.


Recruitment information / eligibility

Status Suspended
Enrollment 30
Est. completion date January 31, 2024
Est. primary completion date December 27, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Hypoxemic respiratory failure in hematological patients (PaO2 < 70 mmHg or P/F < 150) Exclusion Criteria: - Patients with positive-pressure ventilation regimen of high flow nasal cannula prior to ICU admission - Unstable clinical condition (use of vasopressors, acute coronary syndrome...) - Refusal of treatment or informed consent - Agitation (RASS =+2) or lack of collaboration (Kelly Matthay = 5) - Multiple organ failure - Enrollment in other study protocols

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Italy Anesthesiology and Intensive Care Clinic - Department of Medicine - ASUIUD Udine

Sponsors (1)

Lead Sponsor Collaborator
Azienda Sanitaria-Universitaria Integrata di Udine

Country where clinical trial is conducted

Italy, 

References & Publications (32)

Agarwal R, Handa A, Aggarwal AN, Gupta D, Behera D. Outcomes of noninvasive ventilation in acute hypoxemic respiratory failure in a respiratory intensive care unit in north India. Respir Care. 2009 Dec;54(12):1679-87. — View Citation

Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007 Jan;35(1):18-25. doi: 10.1097/01.CCM.0000251821.44259.F3. — View Citation

Antonelli M, Conti G, Rocco M, Bufi M, De Blasi RA, Vivino G, Gasparetto A, Meduri GU. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998 Aug 13;339(7):429-35. doi: 10.1056/NEJM199808133390703. — View Citation

Azoulay E, Thiery G, Chevret S, Moreau D, Darmon M, Bergeron A, Yang K, Meignin V, Ciroldi M, Le Gall JR, Tazi A, Schlemmer B. The prognosis of acute respiratory failure in critically ill cancer patients. Medicine (Baltimore). 2004 Nov;83(6):360-370. doi: 10.1097/01.md.0000145370.63676.fb. — View Citation

Benoit DD, Vandewoude KH, Decruyenaere JM, Hoste EA, Colardyn FA. Outcome and early prognostic indicators in patients with a hematologic malignancy admitted to the intensive care unit for a life-threatening complication. Crit Care Med. 2003 Jan;31(1):104-12. doi: 10.1097/00003246-200301000-00017. — View Citation

Boldrini R, Fasano L, Nava S. Noninvasive mechanical ventilation. Curr Opin Crit Care. 2012 Feb;18(1):48-53. doi: 10.1097/MCC.0b013e32834ebd71. — View Citation

Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med. 2017 Feb 15;195(4):438-442. doi: 10.1164/rccm.201605-1081CP. — View Citation

Carteaux G, Millan-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, Schortgen F, Brochard L, Brun-Buisson C, Mekontso Dessap A. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit Care Med. 2016 Feb;44(2):282-90. doi: 10.1097/CCM.0000000000001379. — View Citation

Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickening during inspiration. J Appl Physiol (1985). 1997 Jul;83(1):291-6. doi: 10.1152/jappl.1997.83.1.291. — View Citation

Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008 Nov;34(11):2010-8. doi: 10.1007/s00134-008-1208-3. Epub 2008 Jul 16. — View Citation

Contejean A, Lemiale V, Resche-Rigon M, Mokart D, Pene F, Kouatchet A, Mayaux J, Vincent F, Nyunga M, Bruneel F, Rabbat A, Perez P, Meert AP, Benoit D, Hamidfar R, Darmon M, Jourdain M, Renault A, Schlemmer B, Azoulay E. Increased mortality in hematological malignancy patients with acute respiratory failure from undetermined etiology: a Groupe de Recherche en Reanimation Respiratoire en Onco-Hematologique (Grrr-OH) study. Ann Intensive Care. 2016 Dec;6(1):102. doi: 10.1186/s13613-016-0202-0. Epub 2016 Oct 25. — View Citation

Corley A, Rickard CM, Aitken LM, Johnston A, Barnett A, Fraser JF, Lewis SR, Smith AF. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev. 2017 May 30;5(5):CD010172. doi: 10.1002/14651858.CD010172.pub2. — View Citation

Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, Dambrosio M, Cinnella G, Bruno F, Grasso S. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016 Jan 5;20:1. doi: 10.1186/s13054-015-1178-0. — View Citation

Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003 Dec 15;168(12):1438-44. doi: 10.1164/rccm.200301-072OC. Epub 2003 Sep 18. — View Citation

Frat JP, Ragot S, Girault C, Perbet S, Prat G, Boulain T, Demoule A, Ricard JD, Coudroy R, Robert R, Mercat A, Brochard L, Thille AW; REVA network. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. Lancet Respir Med. 2016 Aug;4(8):646-652. doi: 10.1016/S2213-2600(16)30093-5. Epub 2016 May 27. — View Citation

Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, Devaquet J, Nseir S, Razazi K, Mira JP, Argaud L, Chakarian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Beduneau G, Deletage-Metreau C, Richard JC, Brochard L, Robert R; FLORALI Study Group; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015 Jun 4;372(23):2185-96. doi: 10.1056/NEJMoa1503326. Epub 2015 May 17. — View Citation

Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A, Murray A, Brace D, Urrea C, Reid WD, Tomlinson G, Slutsky AS, Kavanagh BP, Brochard LJ, Ferguson ND. Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am J Respir Crit Care Med. 2018 Jan 15;197(2):204-213. doi: 10.1164/rccm.201703-0536OC. — View Citation

Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet. 2016 Apr 30;387(10030):1856-66. doi: 10.1016/S0140-6736(16)30176-3. Epub 2016 Apr 28. — View Citation

Goligher EC, Kavanagh BP, Rubenfeld GD, Adhikari NK, Pinto R, Fan E, Brochard LJ, Granton JT, Mercat A, Marie Richard JC, Chretien JM, Jones GL, Cook DJ, Stewart TE, Slutsky AS, Meade MO, Ferguson ND. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med. 2014 Jul 1;190(1):70-6. doi: 10.1164/rccm.201404-0688OC. — View Citation

Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiol. 2012 Aug;78(8):959-66. Epub 2012 Jun 14. — View Citation

Hernandez G, Vaquero C, Colinas L, Cuena R, Gonzalez P, Canabal A, Sanchez S, Rodriguez ML, Villasclaras A, Fernandez R. Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA. 2016 Oct 18;316(15):1565-1574. doi: 10.1001/jama.2016.14194. Erratum In: JAMA. 2016 Nov 15;316(19):2047-2048. JAMA. 2017 Feb 28;317(8):858. — View Citation

Hess DR. Noninvasive ventilation for acute respiratory failure. Respir Care. 2013 Jun;58(6):950-72. doi: 10.4187/respcare.02319. — View Citation

L'Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, Mancebo J, Brochard L. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005 Nov 1;172(9):1112-8. doi: 10.1164/rccm.200402-226OC. Epub 2005 Aug 4. — View Citation

Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017 Jul;5(14):292. doi: 10.21037/atm.2017.06.55. — View Citation

Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009 Jul 18;374(9685):250-9. doi: 10.1016/S0140-6736(09)60496-7. — View Citation

Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, Similowski T, Demoule A. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care. 2015 Feb 25;19(1):56. doi: 10.1186/s13054-015-0763-6. — View Citation

Stenqvist O, Grivans C, Andersson B, Lundin S. Lung elastance and transpulmonary pressure can be determined without using oesophageal pressure measurements. Acta Anaesthesiol Scand. 2012 Jul;56(6):738-47. doi: 10.1111/j.1399-6576.2012.02696.x. Epub 2012 Apr 23. — View Citation

Stephan F, Barrucand B, Petit P, Rezaiguia-Delclaux S, Medard A, Delannoy B, Cosserant B, Flicoteaux G, Imbert A, Pilorge C, Berard L; BiPOP Study Group. High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery: A Randomized Clinical Trial. JAMA. 2015 Jun 16;313(23):2331-9. doi: 10.1001/jama.2015.5213. — View Citation

Talmor D, Sarge T, Malhotra A, O'Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008 Nov 13;359(20):2095-104. doi: 10.1056/NEJMoa0708638. Epub 2008 Nov 11. — View Citation

Terzi N, Piquilloud L, Roze H, Mercat A, Lofaso F, Delisle S, Jolliet P, Sottiaux T, Tassaux D, Roesler J, Demoule A, Jaber S, Mancebo J, Brochard L, Richard JC. Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference. Crit Care. 2012 Jun 20;16(3):225. doi: 10.1186/cc11297. — View Citation

Thiery G, Azoulay E, Darmon M, Ciroldi M, De Miranda S, Levy V, Fieux F, Moreau D, Le Gall JR, Schlemmer B. Outcome of cancer patients considered for intensive care unit admission: a hospital-wide prospective study. J Clin Oncol. 2005 Jul 1;23(19):4406-13. doi: 10.1200/JCO.2005.01.487. — View Citation

Wait JL, Nahormek PA, Yost WT, Rochester DP. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol (1985). 1989 Oct;67(4):1560-8. doi: 10.1152/jappl.1989.67.4.1560. — View Citation

* Note: There are 32 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Diaphragm thickening fraction Diaphragm thickening fraction measured with echography At ICU admission
Secondary Diaphragm thickening fraction Diaphragm thickening fraction measured with echography From date of enrollment until the date of death from any cause or ICU discharge, assessed up to 36 months
Secondary Arterial blood gas analysis Arterial blood gas analysis From date of enrollment until the date of death from any cause or ICU discharge, assessed up to 36 months
Secondary Failure of non-invasive ventilation Failure of non-invasive ventilation according to hospital NIV protocol From date of enrollment until the date of death from any cause or ICU discharge, assessed up to 36 months
Secondary Rate of tracheal intubation Tracheal intubation From date of enrollment until the date of death from any cause or ICU discharge, assessed up to 36 months
Secondary Duration of positive-pressure ventilation Duration of positive-pressure ventilation (NIV or mechanical ventilation) From date of enrollment until the date of death from any cause or ICU discharge, assessed up to 36 months
Secondary Hospital length of stay Hospital length of stay From date of in-hospital admission until the date of hospital discharge, assessed up to 36 months
Secondary In-hospital mortality In-hospital mortality From date of in-hospital admission until the date of death from any cause or hospital discharge, assessed up to 36 months
See also
  Status Clinical Trial Phase
Completed NCT03909854 - Pragmatic Investigation of Volume Targeted Ventilation-1 N/A
Recruiting NCT03662438 - HOPE (Home-based Oxygen [Portable] and Exercise) for Patients on Long Term Oxygen Therapy (LTOT) N/A
Recruiting NCT05308719 - Nasal Oxygen Therapy After Cardiac Surgery N/A
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04030208 - Evaluating Safety and Efficacy of Umbulizer in Patients Requiring Intermittent Positive Pressure Ventilation N/A
Recruiting NCT04542096 - Real Time Evaluation of Dynamic Changes of the Lungs During Respiratory Support of VLBW Neonates Using EIT
Recruiting NCT04668313 - COVID-19 Advanced Respiratory Physiology (CARP) Study
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04505592 - Tenecteplase in Patients With COVID-19 Phase 2
Completed NCT03943914 - Early Non-invasive Ventilation and High-flow Nasal Oxygen Therapy for Preventing Delayed Respiratory Failure in Hypoxemic Blunt Chest Trauma Patients. N/A
Active, not recruiting NCT03472768 - The Impact of Age-dependent Haptoglobin Deficiency on Plasma Free Hemoglobin Levels During Extracorporeal Membrane Oxygenation Support
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Not yet recruiting NCT02542423 - Endocan Predictive Value in Postcardiac Surgery Acute Respiratory Failure. N/A
Completed NCT02265198 - Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome N/A
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Completed NCT01659268 - Performance of Baccalaureate Nursing Students in Insertion of Laryngeal Mask: a Trial in Mannequins N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A
Terminated NCT01333059 - Cycling of Sedative Infusions in Critically Ill Pediatric Patients N/A
Completed NCT01249794 - Non Invasive Ventilation After Cardiac Surgery N/A