Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03317925
Other study ID # 00046001
Secondary ID
Status Completed
Phase N/A
First received October 18, 2017
Last updated November 6, 2017
Start date July 16, 2014
Est. completion date April 26, 2017

Study information

Verified date October 2017
Source Wake Forest University Health Sciences
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

In pediatric kidney transplant patients, rejection, medication toxicity and ischemia cause early and chronic renal allograft injury, which reduces graft lifespan and patient survival. Early detection of injury would facilitate prevention and treatment. The gold standard surveillance biopsy has limitations including delayed discovery of injury. No noninvasive test identifies graft injury before it is clinically apparent. This project's goal is to develop a novel early marker of subclinical graft injury to facilitate prompt recognition and treatment.


Description:

Kidney damage activates the traditional renin-angiotensin (Ang) system (RAS), characterized by Ang-converting enzyme (ACE)/Ang II/Ang II type 1 receptor. The Ang-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas pathway counteracts this damage. The balance, or ratio, between levels of the ACE/Ang II and ACE2/Ang-(1-7) pathways may be clinically important because Ang-(1-7) counteracts Ang II-mediated injury. An increase in ACE and Ang II expression and a decrease in ACE2 and Ang-(1-7) expression on tubular cells may promote renal injury. Tubular damage may increase urinary loss of protective ACE2 and Ang-(1-7), propagating renal damage by allowing ACE and Ang II to stimulate inflammation and fibrosis unopposed. The investigators hypothesis is that a shift in the urinary ACE-to-ACE2 and Ang II-to-Ang-(1-7) ratios towards ACE2 and Ang-(1-7) predicts acute graft injury diagnosed on renal biopsy and predicts chronic graft damage on renal biopsy.


Recruitment information / eligibility

Status Completed
Enrollment 29
Est. completion date April 26, 2017
Est. primary completion date January 20, 2016
Accepts healthy volunteers No
Gender All
Age group 1 Year to 20 Years
Eligibility Inclusion Criteria:

- Ages 1 - 20 years

- Actively listed on the transplant list at Lucile Packard Children's Hospital at Stanford and received a renal transplant during the study enrollment period

Exclusion Criteria:

- Transplanted at a center other than Lucile Packard Children's Hospital at Stanford

Study Design


Intervention

Procedure:
Renal Transplantation
Kidney transplantation and biomarkers that can identify injury after transplant.

Locations

Country Name City State
United States Wake Forest University Baptist Medical Center Winston-Salem North Carolina

Sponsors (2)

Lead Sponsor Collaborator
Wake Forest University Health Sciences Stanford University

Country where clinical trial is conducted

United States, 

References & Publications (45)

Ahmed AK, El Nahas AM, Johnson TS. Changes in matrix metalloproteinases and their inhibitors in kidney transplant recipients. Exp Clin Transplant. 2012 Aug;10(4):332-43. — View Citation

Arbeiter K, Pichler A, Stemberger R, Mueller T, Ruffingshofer D, Vargha R, Balzar E, Aufricht C. ACE inhibition in the treatment of children after renal transplantation. Pediatr Nephrol. 2004 Feb;19(2):222-6. Epub 2003 Dec 13. — View Citation

Brosnihan KB, Neves LA, Joyner J, Averill DB, Chappell MC, Sarao R, Penninger J, Ferrario CM. Enhanced renal immunocytochemical expression of ANG-(1-7) and ACE2 during pregnancy. Hypertension. 2003 Oct;42(4):749-53. Epub 2003 Jul 21. — View Citation

Castoldi G, di Gioia CR, Travaglini C, Busca G, Redaelli S, Bombardi C, Stella A. Angiotensin II increases tissue-specific inhibitor of metalloproteinase-2 expression in rat aortic smooth muscle cells in vivo: evidence of a pressure-independent effect. Clin Exp Pharmacol Physiol. 2007 Mar;34(3):205-9. — View Citation

Clark MA, Tallant EA, Diz DI. Downregulation of the AT1A receptor by pharmacologic concentrations of Angiotensin-(1-7). J Cardiovasc Pharmacol. 2001 Apr;37(4):437-48. — View Citation

Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012;7(9):e44161. doi: 10.1371/journal.pone.0044161. Epub 2012 Sep 6. — View Citation

Dilauro M, Burns KD. Angiotensin-(1-7) and its effects in the kidney. ScientificWorldJournal. 2009 Jun 30;9:522-35. doi: 10.1100/tsw.2009.70. Review. — View Citation

Dong J, Wong SL, Lau CW, Lee HK, Ng CF, Zhang L, Yao X, Chen ZY, Vanhoutte PM, Huang Y. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012 Dec;33(23):2980-90. doi: 10.1093/eurheartj/ehr459. Epub 2012 Jan 19. — View Citation

Ejaz AA, Kambhampati G, Ejaz NI, Dass B, Lapsia V, Arif AA, Asmar A, Shimada M, Alsabbagh MM, Aiyer R, Johnson RJ. Post-operative serum uric acid and acute kidney injury. J Nephrol. 2012 Jul-Aug;25(4):497-505. doi: 10.5301/jn.5000173. — View Citation

el-Agroudy AE, Hassan NA, Foda MA, Ismail AM, el-Sawy EA, Mousa O, Ghoneim MA. Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients. Am J Nephrol. 2003 Sep-Oct;23(5):300-6. Epub 2003 Aug 6. — View Citation

Feig DI. Hyperuricemia and hypertension. Adv Chronic Kidney Dis. 2012 Nov;19(6):377-85. doi: 10.1053/j.ackd.2012.05.009. — View Citation

Ferrario CM. ACE2: more of Ang-(1-7) or less Ang II? Curr Opin Nephrol Hypertens. 2011 Jan;20(1):1-6. doi: 10.1097/MNH.0b013e3283406f57. Review. — View Citation

Furness PN, Taub N, Assmann KJ, Banfi G, Cosyns JP, Dorman AM, Hill CM, Kapper SK, Waldherr R, Laurinavicius A, Marcussen N, Martins AP, Nogueira M, Regele H, Seron D, Carrera M, Sund S, Taskinen EI, Paavonen T, Tihomirova T, Rosenthal R. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am J Surg Pathol. 2003 Jun;27(6):805-10. — View Citation

Geara AS, Azzi J, Jurewicz M, Abdi R. The renin-angiotensin system: an old, newly discovered player in immunoregulation. Transplant Rev (Orlando). 2009 Jul;23(3):151-8. doi: 10.1016/j.trre.2009.04.002. Review. — View Citation

Grimm PC, Nickerson P, Gough J, McKenna R, Stern E, Jeffery J, Rush DN. Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J Am Soc Nephrol. 2003 Jun;14(6):1662-8. — View Citation

Halawa A. The early diagnosis of acute renal graft dysfunction: a challenge we face. The role of novel biomarkers. Ann Transplant. 2011 Jan-Mar;16(1):90-8. Review. — View Citation

Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, Han WK, Marcus RJ, Parikh CR. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol. 2010 Jan;21(1):189-97. doi: 10.1681/ASN.2009030264. Epub 2009 Sep 17. — View Citation

Haririan A, Metireddy M, Cangro C, Nogueira JM, Rasetto F, Cooper M, Klassen DK, Weir MR. Association of serum uric acid with graft survival after kidney transplantation: a time-varying analysis. Am J Transplant. 2011 Sep;11(9):1943-50. doi: 10.1111/j.1600-6143.2011.03613.x. Epub 2011 Aug 3. — View Citation

Heringer-Walther S, Eckert K, Schumacher SM, Uharek L, Wulf-Goldenberg A, Gembardt F, Fichtner I, Schultheiss HP, Rodgers K, Walther T. Angiotensin-(1-7) stimulates hematopoietic progenitor cells in vitro and in vivo. Haematologica. 2009 Jun;94(6):857-60. doi: 10.3324/haematol.2008.000034. Epub 2009 Apr 18. — View Citation

Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009 Jul;32(7):533-6. doi: 10.1038/hr.2009.74. Epub 2009 May 22. Review. — View Citation

Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB, Milford E, Abdi R. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J Am Soc Nephrol. 2007 Apr;18(4):1093-102. Epub 2007 Feb 28. — View Citation

Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003 Jun;41(6):1287-93. Epub 2003 May 12. — View Citation

Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008 May;172(5):1174-83. doi: 10.2353/ajpath.2008.070762. Epub 2008 Apr 10. — View Citation

Ling XB, Sigdel TK, Lau K, Ying L, Lau I, Schilling J, Sarwal MM. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol. 2010 Apr;21(4):646-53. doi: 10.1681/ASN.2009080876. Epub 2010 Feb 11. — View Citation

Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens. 1996 Jun;14(6):799-805. — View Citation

Lutz J, Yao Y, Song E, Antus B, Hamar P, Liu S, Heemann U. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats. Transplantation. 2005 Mar 27;79(6):655-61. — View Citation

Mazanowska O, Kaminska D, Krajewska M, Zabinska M, Kopec W, Boratynska M, Chudoba P, Patrzalek D, Klinger M. Imbalance of metallaproteinase/tissue inhibitors of metalloproteinase system in renal transplant recipients with chronic allograft injury. Transplant Proc. 2011 Oct;43(8):3000-3. doi: 10.1016/j.transproceed.2011.08.012. — View Citation

Miyake-Ogawa C, Miyazaki M, Abe K, Harada T, Ozono Y, Sakai H, Koji T, Kohno S. Tissue-specific expression of renin-angiotensin system components in IgA nephropathy. Am J Nephrol. 2005 Jan-Feb;25(1):1-12. Epub 2005 Jan 7. — View Citation

Mizuiri S, Aoki T, Hemmi H, Arita M, Sakai K, Aikawa A. Urinary angiotensin-converting enzyme 2 in patients with CKD. Nephrology (Carlton). 2011 Aug;16(6):567-72. doi: 10.1111/j.1440-1797.2011.01467.x. — View Citation

Mizuiri S, Hemmi H, Arita M, Aoki T, Ohashi Y, Miyagi M, Sakai K, Shibuya K, Hase H, Aikawa A. Increased ACE and decreased ACE2 expression in kidneys from patients with IgA nephropathy. Nephron Clin Pract. 2011;117(1):c57-66. doi: 10.1159/000319648. Epub 2010 Aug 4. — View Citation

Mizuiri S, Hemmi H, Arita M, Ohashi Y, Tanaka Y, Miyagi M, Sakai K, Ishikawa Y, Shibuya K, Hase H, Aikawa A. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis. 2008 Apr;51(4):613-23. doi: 10.1053/j.ajkd.2007.11.022. Epub 2008 Mar 4. — View Citation

Moon JY. ACE2 and Angiotensin-(1-7) in Hypertensive Renal Disease. Electrolyte Blood Press. 2011 Dec;9(2):41-4. doi: 10.5049/EBP.2011.9.2.41. Epub 2011 Dec 31. — View Citation

Numakura K, Satoh S, Tsuchiya N, Saito M, Maita S, Obara T, Tsuruta H, Inoue T, Narita S, Horikawa Y, Kagaya H, Miura M, Habuchi T. Hyperuricemia at 1 year after renal transplantation, its prevalence, associated factors, and graft survival. Transplantation. 2012 Jul 27;94(2):145-51. doi: 10.1097/TP.0b013e318254391b. — View Citation

Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, Khokha R, Crackower MA, Backx PH, Penninger JM, Scholey JW. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol. 2006 Jun;168(6):1808-20. — View Citation

Pan CH, Wen CH, Lin CS. Interplay of angiotensin II and angiotensin(1-7) in the regulation of matrix metalloproteinases of human cardiocytes. Exp Physiol. 2008 May;93(5):599-612. doi: 10.1113/expphysiol.2007.041830. Epub 2008 Feb 22. — View Citation

Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006 Nov;17(11):2985-91. Epub 2006 Oct 11. Review. — View Citation

Santos RA, Ferreira AJ, Pinheiro SV, Sampaio WO, Touyz R, Campagnole-Santos MJ. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs. 2005 Aug;14(8):1019-31. Review. — View Citation

Santos RA, Ferreira AJ, Simões E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008 May;93(5):519-27. doi: 10.1113/expphysiol.2008.042002. Epub 2008 Feb 29. Review. — View Citation

Schaub S, Mayr M, Hönger G, Bestland J, Steiger J, Regeniter A, Mihatsch MJ, Wilkins JA, Rush D, Nickerson P. Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation. 2007 Jul 15;84(1):104-12. — View Citation

Shah PR, Kute VB, Saboo DS, Goplani KR, Gumber MR, Vanikar AV, Patel HV, Trivedi HL. Safety and efficacy of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in chronic allograft injury. Saudi J Kidney Dis Transpl. 2011 Nov;22(6):1128-32. — View Citation

Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008 Apr;8(4):753-60. doi: 10.1111/j.1600-6143.2008.02159.x. Epub 2008 Feb 19. — View Citation

Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006 Jun;69(12):2212-8. Epub 2006 May 3. — View Citation

Szabo A, Lutz J, Schleimer K, Antus B, Hamar P, Philipp T, Heemann U. Effect of angiotensin-converting enzyme inhibition on growth factor mRNA in chronic renal allograft rejection in the rat. Kidney Int. 2000 Mar;57(3):982-91. — View Citation

Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Aleksandrowicz E, Lysiak-Szydlowska W, Rutkowski B. Renal allograft protection with angiotensin II type 1 receptor antagonists. Am J Transplant. 2007 Jan;7(1):243-8. — View Citation

Xiao F, Hiremath S, Knoll G, Zimpelmann J, Srivaratharajah K, Jadhav D, Fergusson D, Kennedy CR, Burns KD. Increased urinary angiotensin-converting enzyme 2 in renal transplant patients with diabetes. PLoS One. 2012;7(5):e37649. doi: 10.1371/journal.pone.0037649. Epub 2012 May 22. — View Citation

* Note: There are 45 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Acute graft injury Renal biopsy-confirmed acute renal allograft injury as determined by a pathologist (binary yes or no) Within six months after kidney transplant
Secondary Chronic graft damage Renal biopsy-confirmed chronic renal allograft damage as determined by a quantitative fibrosis pathology stain (percent fibrosis from 0 to 100%) Six months after kidney transplant
Secondary Renal function Glomerular filtration rate by the Schwartz equation (mL/min/1.73 m^2) Within six months after kidney transplant
Secondary Proteinuria Urine protein-to-creatinine ratio above 0.2 mg/mg creatinine Within six months after kidney transplant
See also
  Status Clinical Trial Phase
Completed NCT01220050 - Paricalcitol in Reducing Parathyroid Hormone Levels and Ameliorating Markers of Bone Remodelling in Renal Transplant Recipients With Secondary Hyperparathyroidism Phase 2
Completed NCT00820469 - Study of the Influence of Plasma Exchange on the Pharmacokinetics of Rituximab Phase 4
Completed NCT00239005 - Enteric-Coated Mycophenolate Sodium on Quality of Life in Patients With Gastrointestinal Symptoms Related to Mycophenolate Mofetil Therapy After Kidney Transplantation Phase 4
Completed NCT00270153 - The Use of ACE Inhibitors in the Early Renal Post-transplant Period Phase 1
Completed NCT02711826 - Treg Therapy in Subclinical Inflammation in Kidney Transplantation Phase 1/Phase 2
Completed NCT03837522 - Trial to Define the Benefits and Harms of Deceased Donor Kidney Procurement Biopsies N/A
Not yet recruiting NCT06025240 - Expanding the Scope of Post-transplant HLA-specific Antibody Detection and Monitoring in Renal Transplant Recipients
Completed NCT01256294 - Pharmacokinetics of Generic to Brand Tacrolimus in Stable Renal Transplant Patients Phase 4
Suspended NCT01059292 - TIPE2 Associated With Kidney Transplant N/A
Completed NCT00547040 - Arterial Stiffness and Calcifications in Incident Renal Transplant Recipients
Suspended NCT03043339 - Characterization Of the Intestinal Microbiome Evolution After Kidney Transplant Donation or Receipt
Completed NCT02581644 - Assessment of Effectiveness of Belatacept Patient Alert Card in Patients Following Renal Transplantation in a Sample of EU Countries N/A
Completed NCT01728012 - Long-term Cardiovascular Risk Following Successful Renal Transplantation N/A
Terminated NCT01011114 - Using Cinacalcet to Treat the Hypophosphatemia of Early Kidney Transplant N/A
Completed NCT02117596 - Calcineurin Inhibitor Based Immunosuppression Withdrawal N/A
Completed NCT00555373 - Pediatric Kidney Transplant Study of Sirolimus, Mycophenolate Mofetil, and Corticosteroids vs Calcineurin Inhibitor Based Immunosuppression N/A
Recruiting NCT05156086 - Safety and Effectiveness of COVID-19 Vaccine in Kidney Transplant Recipients
Completed NCT01334333 - Comparison of Medication Adherence Between Once and Twice Daily Tacrolimus in Stable Renal Transplant Recipients Phase 4
Recruiting NCT03107858 - The Effect of Norepinephrine Versus Dopamine in Renal Transplant Recipients on Postoperative Graft Function Phase 2/Phase 3
Completed NCT00352547 - Influence of Genes on Sirolimus Metabolism in Patients With Kidney Transplantation N/A