Clinical Trials Logo

Refractory Hairy Cell Leukemia clinical trials

View clinical trials related to Refractory Hairy Cell Leukemia.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT02037256 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Bortezomib and Filgrastim to Promote Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma

Start date: July 2011
Phase: N/A
Study type: Interventional

This clinical trial studies peripheral blood hemapoietic stem cell mobilization with the combination of bortezomib and G-CSF (filgrastim) in multiple myeloma and non-Hodgkin lymphoma patients.

NCT ID: NCT01959477 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

Start date: March 2014
Phase: Phase 0
Study type: Interventional

This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.

NCT ID: NCT01839916 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: April 4, 2013
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

NCT ID: NCT01789255 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies

Start date: June 2013
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies how well giving vorinostat, tacrolimus, and methotrexate works in preventing graft-versus-host disease (GVHD) after stem cell transplant in patients with hematological malignancies. Vorinostat, tacrolimus, and methotrexate may be an effective treatment for GVHD caused by a bone marrow transplant.

NCT ID: NCT01748721 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MORAb-004 in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma

Start date: November 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them

NCT ID: NCT01588015 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

Start date: October 29, 2012
Phase: Phase 1
Study type: Interventional

This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.

NCT ID: NCT01567709 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

Start date: April 16, 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01529827 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: February 28, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening

NCT ID: NCT01384513 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

A Two-Step Approach to Reduced Intensity Bone Marrow Transplant for Patients With Hematological Malignancies

Start date: August 4, 2011
Phase: Phase 2
Study type: Interventional

The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.

NCT ID: NCT01326702 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Veliparib, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory Lymphoma, Multiple Myeloma, or Solid Tumors

Start date: July 2011
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and the best dose of veliparib when given together with bendamustine hydrochloride and rituximab and to see how well they work in treating patients with lymphoma, multiple myeloma, or solid tumors that have come back or have not responded to treatment. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving veliparib together with bendamustine hydrochloride and rituximab may kill more cancer cells.