Clinical Trials Logo

Recurrent Acute Myeloid Leukemia clinical trials

View clinical trials related to Recurrent Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT04752163 Completed - Clinical trials for Hematopoietic and Lymphoid Cell Neoplasm

DS-1594b With or Without Azacitidine, Venetoclax, or Mini-HCVD for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

Start date: March 25, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the effect of DS-1594b with or without azacitidine, venetoclax, or mini-HCVD in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back (recurrent) or not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, venetoclax, and mini-HCVD, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. DS-1594b may inhibit specific protein bindings that cause blood cancer. Giving DS-1594b, azacitidine, and venetoclax, or mini-HCVD may work better in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia.

NCT ID: NCT04746235 Recruiting - Clinical trials for Acute Myeloid Leukemia

Venetoclax and ASTX727 for the Treatment of Relapsed, Refractory, or Newly Diagnosed Acute Myeloid Leukemia

Start date: February 22, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the possible benefits of venetoclax and ASTX727 in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory), or elderly patients with newly diagnosed acute myeloid leukemia who are not candidates for intensive chemotherapy. Venetoclax may help block the formation of growths that may become cancer. ASTX727 is the combination of a fixed dose of 2 drugs, cedazuridine and decitabine. Cedazuridine may slow down how fast decitabine is broken down by the body, and decitabine may block abnormal cells or cancer cells from growing. Giving venetoclax and ASTX727 may help to control the disease.

NCT ID: NCT04655391 Withdrawn - Clinical trials for Recurrent Acute Myeloid Leukemia

Glasdegib-Based Treatment Combinations for the Treatment of Patients With Relapsed Acute Myeloid Leukemia Who Have Undergone Hematopoietic Cell Transplantation

Start date: June 25, 2022
Phase: Phase 1
Study type: Interventional

This phase Ib trial evaluates the best dose and effect of glasdegib in combination with venetoclax and decitabine, or gilteritinib, bosutinib, ivosidenib, or enasidenib in treating patients with acute myeloid leukemia that has come back (relapsed) after stem cell transplantation. Chemotherapy drugs, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Glasdegib, bosutinib, ivosidenib, and enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Glasdegib inhibits the Sonic the Hedgehog gene. Venetoclax inhibits BCL-2 gene. Bosutinib is a tyrosine kinase inhibitor that inhibits BCR-ABL gene fusion. Ivosidenib inhibits isocitrate dehydrogenase-1 gene or IDH-1. Enasidenib inhibits isocitrate dehydrogenase-2 gene or IDH-2. This study involves an individualized approach that may allow doctors and researchers to more accurately predict which treatment plan works best for patients with relapsed acute myeloid leukemia.

NCT ID: NCT04526795 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Fludarabine, Cytarabine, and Pegcrisantaspase for the Treament of Relapsed or Refractory Leukemia

Start date: April 9, 2021
Phase: Phase 1
Study type: Interventional

This phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.

NCT ID: NCT04493164 Recruiting - Clinical trials for Myelodysplastic Syndrome

CPX-351 and Ivosidenib for the Treatment of IDH1 Mutated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

Start date: December 30, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial investigates how well CPX-351 and ivosidenib work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that has IDH1 mutation. The safety of this drug combination will also be studied. IDH1 is a type of genetic mutation (change). Chemotherapy drugs, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ivosidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The purpose of this trial is to learn if CPX-351 in combination with ivosidenib can help to control IDH1-mutated acute myeloid leukemia or high-risk myelodysplastic syndrome.

NCT ID: NCT04493099 Withdrawn - Clinical trials for Refractory Acute Myeloid Leukemia

Alvocidib in Combination With Decitabine and Venetoclax in Patients With Relapsed or Refractory AML or as Frontline Therapy in Unfit Patients With AML

Start date: October 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial investigates the side effects and best dose of alvocidib when given together with decitabine and venetoclax and to see how well it works in treating patients with acute myeloid leukemia that has come back (relapsed), has not responded to previous treatment (refractory), or as frontline treatment for patients unable to receive other therapies (unfit). Alvocidib, decitabine, and venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT04487106 Completed - Clinical trials for Refractory Acute Myeloid Leukemia

Azacitidine, Venetoclax, and Trametinib for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Higher-Risk Myelodysplastic Syndrome

Start date: July 21, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial investigates how well azacitidine, venetoclax, and trametinib work in treating patients with acute myeloid leukemia or higher-risk myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax and trametinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The goal of this study is learn if the combination of azacitidine, venetoclax, and trametinib can help to control acute myeloid leukemia or myelodysplastic syndrome.

NCT ID: NCT04435691 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Magrolimab, Azacitidine, and Venetoclax for the Treatment of Acute Myeloid Leukemia

Start date: July 28, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of magrolimab and venetoclax when given together with azacitidine and to see how well they work in treating patients with acute myeloid leukemia. Magrolimab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving magrolimab, azacitidine, and venetoclax may help to control the disease.

NCT ID: NCT04375631 Recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

CLAG-M or FLAG-Ida Chemotherapy and Reduced-Intensity Conditioning Donor Stem Cell Transplant for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelomonocytic Leukemia

Start date: December 3, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the best dose of total body irradiation when given with cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) or idarubicin, fludarabine, cytarabine and filgrastim (FLAG-Ida) chemotherapy reduced-intensity conditioning regimen before stem cell transplant in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Giving chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can attack the body's normal cells called graft versus host disease. Giving cyclophosphamide, cyclosporine, and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT04250051 Recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Ivosidenib and Combination Chemotherapy for the Treatment of IDH1 Mutant Relapsed or Refractory Acute Myeloid Leukemia

Start date: December 21, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ivosidenib when given together with combination chemotherapy for the treatment of 1DH1 mutant acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory). Ivosidenib may stop the growth of cancer cells by blocking the IDH1 mutation and some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fludarabine phosphate, cytarabine, and filgrastim, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ivosidenib with combination chemotherapy may work better in treating patients with acute myeloid leukemia compared to chemotherapy alone.