Clinical Trials Logo

Clinical Trial Summary

This study was intended to evaluate a new assistive neuro-technology, known as the Tongue Drive System (TDS), by its potential end-users, i.e. individuals with severe disabilities, who are the best experts for indicating the benefits and possible shortcomings of any new ANT. Our goal is to assess the acceptability and usability of the TDS for various tasks that are important in daily lives of these individuals, such as computer access, wheeled mobility, and environmental control.


Clinical Trial Description

A new assistive neuro-technology (ANT), called the Tongue Drive System (TDS), enables individuals with severe disability access their environment with nothing but their tongue motion. The human tongue is inherently capable of sophisticated control and manipulation tasks with many degrees of freedom. It can move rapidly and accurately within the mouth such that the tip can touch every single tooth. The direct connection between the brain and the tongue generally allows it to escape damage even in severe spinal cord injuries (SCI). Unlike the brain, the tongue is accessible, and its location inside the mouth affords a degree of privacy.

TDS consists of a magnetic tracer, the size of a lentil, attached to the tongue by gluing, implantation, or piercing. The tracer generates a magnetic field inside and around the mouth that is detected by an array of magnetic sensors mounted on a wireless headset. Tongue-movement-induced changes in the magnetic field are sent wirelessly to an ultra-mobile computer or smartphone, carried by the user, which processes and translates every tongue motion to a particular user-defined function.

Once an individual with disability is "enabled" to access a computing device, he/she can nearly do everything that an able-bodied individual can do with that device. This includes communicating, education, training, entertainment, and controlling other devices such as powered wheelchairs (PWC), assistive robotic manipulators, and other home/office appliances on a local area network (LAN). Even the individual's own natural or prosthetic limbs can be manipulated to move by functional electrical stimulation (FES).

This study was intended to evaluate the TDS by the ultimate intended users, individuals with severe disabilities, who are the best experts for indicating the benefits and possible shortcomings of any new ANT. Our goal is to assess the acceptability and usability of the TDS for various tasks that are important in daily life such as computer access, wheeled mobility, and environmental control.

Three groups of subjects were recruited:

Group-A: Able-bodied subjects who already have tongue piercing

Group-B: Able-bodied subjects who wanted to receive tongue piercing as part of this trial

Group-C: Subjects with high-level disability, who wanted to receive tongue piercing as part of this trial

Each group of subjects participated in a battery of tasks that quantitatively measures their performance in accessing computers and driving wheelchairs using the TDS.

We also devised acceptable procedures for receiving a magnetic tongue piercing (required in order to use the TDS), and assess its potential safety issues. ;


Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Supportive Care


Related Conditions & MeSH terms


NCT number NCT01124292
Study type Interventional
Source Georgia Institute of Technology
Contact
Status Completed
Phase Phase 1
Start date May 2010
Completion date March 2012

See also
  Status Clinical Trial Phase
Recruiting NCT02574572 - Autologous Mesenchymal Stem Cells Transplantation in Cervical Chronic and Complete Spinal Cord Injury Phase 1
Recruiting NCT05941819 - ARC Therapy to Restore Hemodynamic Stability and Trunk Control in People With Spinal Cord Injury N/A
Completed NCT05265377 - Safety and Usability of the STELO Exoskeleton in People With Acquired Brain Injury and Spinal Cord Injury N/A
Recruiting NCT02331979 - Improving Bladder Function in SCI by Neuromodulation N/A
Completed NCT02777281 - Safe and Effective Shoulder Exercise Training in Manual Wheelchair Users With SCI N/A
Recruiting NCT02978638 - Electrical Stimulation for Continence After Spinal Cord Injury N/A
Completed NCT02262234 - Education Interventions for Self-Management of Pain Post-SCI: A Pilot Study Phase 1/Phase 2
Withdrawn NCT02237547 - Safety and Feasibility Study of Cell Therapy in Treatment of Spinal Cord Injury Phase 1/Phase 2
Completed NCT02161913 - Comparison of Two Psycho-educational Family Group Interventions for Persons With SCI and Their Caregivers N/A
Completed NCT01642901 - Zoledronic Acid in Acute Spinal Cord Injury Phase 3
Terminated NCT02080039 - Electrical Stimulation of Denervated Muscles After Spinal Cord Injury N/A
Completed NCT01884662 - Virtual Walking for Neuropathic Pain in Spinal Cord Injury N/A
Terminated NCT01433159 - Comparison of HP011-101 to Standard Care for Stage I-II Pressure Ulcers in Subjects With Spinal Cord Injury Phase 2
Completed NCT01471613 - Lithium, Cord Blood Cells and the Combination in the Treatment of Acute & Sub-acute Spinal Cord Injury Phase 1/Phase 2
Completed NCT02149511 - Longitudinal Morphometric Changes Following SCI
Completed NCT01467817 - Obesity/Overweight in Persons With Early and Chronic Spinal Cord Injury (SCI) N/A
Terminated NCT01005615 - Patterned Functional Electrical Stimulation (FES) Ergometry of Arm and Shoulder in Individuals With Spinal Cord Injury Phase 1/Phase 2
Completed NCT01025609 - Dietary Patterns and Cardiovascular (CVD) Risk in Spinal Cord Injury (SCI) Factors In Individuals With Chronic Spinal Cord Injury
Completed NCT00663663 - Telephone Intervention for Pain Study (TIPS) N/A
Completed NCT01086930 - Early Intensive Hand Rehabilitation After Spinal Cord Injury Phase 3