Pulmonary Hypertension Clinical Trial
Official title:
The Pulmonary Index of Microcirculatory Resistance: A Novel Hemodynamic Index for Invasively Assessing the Pulmonary Vasculature
The findings from this innovative, first-in-man, prospective pilot study will elucidate the role of PIMR and RV-IMR in pre-capillary PH. The study cohort will consist of patients with pulmonary pressures ranging from normal (advanced lung disease patients undergoing lung transplant evaluation) to severe PH (PAH and CTEPH patients), and thus will allow for identification of a PIMR cutoff. Participants will include: 1) advanced lung disease patients undergoing bilateral heart catheterization as part of their pre-lung transplant work-up, and 2) newly referred patients to PAH and CTEPH clinics undergoing bilateral heart catheterization as part of standard of care work-up. All participants will undergo PIMR testing, and those with pre-capillary PH will also undergo pulmonary OCT and measurement of RV-IMR. The study seeks to define the relationship between PIMR and PH and to establish the PIMR threshold that identifies pulmonary microvascular dysfunction as well as to evaluate the association of PIMR and pulmonary vascular remodeling on OCT in patients with pre-capillary PH. In addition, the study will assess the relationship between RV-IMR and RV pressure overload among patients with pre-capillary PH.
Status | Recruiting |
Enrollment | 30 |
Est. completion date | October 31, 2024 |
Est. primary completion date | July 31, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - =18 years old - Able to provide informed written consent. - Patients with 1) advanced lung disease requiring standard-of-care bilateral heart catheterization as part of lung transplant evaluation in whom mPAP < 20 mmHg on RHC, or 2) PAH/CTEPH (i.e. pre-capillary PH) undergoing standard-of-care bilateral heart catheterization as part of their work-up/treatment Exclusion Criteria: - Contraindicated to undergo fluoroscopy and/or coronary angiography (e.g. pregnancy) - Chronic kidney disease (serum creatinine = 2.0 mg/dL) |
Country | Name | City | State |
---|---|---|---|
United States | Ronald Reagan UCLA Medical Center | Los Angeles | California |
Lead Sponsor | Collaborator |
---|---|
University of California, Los Angeles | Abbott |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Pulmonary Index of Microcirculatory Resistance (PIMR) | PressureWire advanced to distal third of segmental pulmonary artery (PA) for measurement of pulmonary hemodynamics. The derivation of IMR involves the application of Ohm's law (V=IR) to the coronary microcirculatory circuit, where the relationship between resistance (R) = IMR, voltage (V) = pressure (P), and current (I) = flow (Q) can be expressed as follows: IMR = ?P/Q. ?P = the change in pressure across the microvasculature (mean distal coronary artery pressure [Pd] - coronary venous pressure (Pv); Pv is typically disregarded because it is negligible relative to Pd. Based on the principles of thermodilution, flow is inversely proportion to mean transit time (Q ~ 1/Tmn). Lastly, the minimal achievable resistance occurs during maximal hyperemic flow when all available microvessels have theoretically been recruited. Hence, the calculation of IMR simplifies to the following formula: IMR = Pd (pulmonary artery) x TmnHyp. | Baseline | |
Primary | Right Ventricle Index of Microcirculatory Resistance (RV-IMR) | PressureWire advanced to distal third of acute marginal branch of the right coronary artery (RCA) for measurement of pulmonary hemodynamics. The derivation of IMR involves the application of Ohm's law (V=IR) to the coronary microcirculatory circuit, where the relationship between resistance (R) = IMR, voltage (V) = pressure (P), and current (I) = flow (Q) can be expressed as follows: IMR = ?P/Q. ?P = the change in pressure across the microvasculature (mean distal coronary artery pressure [Pd] - coronary venous pressure (Pv); Pv is typically disregarded because it is negligible relative to Pd. Based on the principles of thermodilution, flow is inversely proportion to mean transit time (Q ~ 1/Tmn). Lastly, the minimal achievable resistance occurs during maximal hyperemic flow when all available microvessels have theoretically been recruited. Hence, the calculation of IMR simplifies to the following formula: IMR = Pd (RCA marginal branch) x TmnHyp. | Baseline | |
Primary | OCT-derived pulmonary artery wall thickness | A Dragonfly Optis OCT catheter (Abbott) will be advanced over the PressureWireX to the distal left lower lobe segmental pulmonary artery (luminal diameter < 5 mm and minimal length of 50 mm). OCT images of the pulmonary artery will be recorded via automatic pullback and analyzed offline in a blinded manner. | Baseline | |
Primary | OCT-derived thickness-diameter ratio | A Dragonfly Optis OCT catheter (Abbott) will be advanced over the PressureWireX to the distal left lower lobe segmental pulmonary artery (luminal diameter < 5 mm and minimal length of 50 mm). OCT images of the pulmonary artery will be recorded via automatic pullback and analyzed offline in a blinded manner. | Baseline | |
Primary | OCT-derived wall-area ratio | Baseline |
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT01950585 -
Hydroxyurea in Pulmonary Arterial Hypertension
|
Early Phase 1 | |
Completed |
NCT00527163 -
Role of Nitric Oxide in Malaria
|
||
Completed |
NCT03649932 -
Enteral L Citrulline Supplementation in Preterm Infants - Safety, Efficacy and Dosing
|
Phase 1 | |
Recruiting |
NCT04554160 -
Arrhythmias in Pulmonary Hypertension Assessed by Continuous Long-term Cardiac Monitoring
|
||
Enrolling by invitation |
NCT03683186 -
A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension
|
Phase 3 | |
Completed |
NCT01894035 -
Non-interventional Multi-center Study on Patients Under Routine Treatment of Pulmonary Arterial Hypertension (PAH) With Inhaled Iloprost Using I-Neb as a Device for Inhalation
|
||
Not yet recruiting |
NCT04083729 -
Persistent Pulmonary Hypertension After Percutaneous Mitral Commissurotomy
|
N/A | |
Completed |
NCT02216279 -
Phase-II Study of the Use of PulmoBind for Molecular Imaging of Pulmonary Hypertension
|
Phase 2 | |
Terminated |
NCT02246348 -
Evaluating Lung Doppler Signals in Patients With Systemic Sclerosis (SSc)
|
N/A | |
Terminated |
NCT02243111 -
Detecting Pulmonary Arterial Hypertension (PAH) in Patients With Systemic Sclerosis (SSc) by Ultrasound
|
N/A | |
Completed |
NCT02821156 -
Study on the Use of Inhaled NO (iNO)
|
N/A | |
Recruiting |
NCT01913847 -
Safety and Efficacy Study of HGP1207 in Patients With Pulmonary Hypertension
|
Phase 3 | |
Completed |
NCT06240871 -
Contrast Enhanced PA Pressure Measurements
|
||
Completed |
NCT01615484 -
Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability
|
N/A | |
Completed |
NCT02377934 -
Evaluation of Radiation Induced Pulmonary Hypertension Using MRI in Stage III NSCLC Patients Treated With Chemoradiotherapy. A Pilot Study
|
||
Recruiting |
NCT01091012 -
Effectiveness of the Vasodilator Test With Revatio, Made in Patients With Acute Pulmonary Hypertension
|
Phase 3 | |
Completed |
NCT00739375 -
The Effect of Blood Flow in the Maturing Arteriovenous Access for Hemodialysis on the Development of Pulmonary Hypertension.
|
Phase 1 | |
Completed |
NCT01463514 -
Noninvasive Determination of Cerebral Tissue Oxygenation in Pulmonary Hypertension
|
N/A | |
Completed |
NCT01484899 -
Smoking: a Risk Factor for Pulmonary Arterial Hypertension?
|
N/A | |
Completed |
NCT02275793 -
The Regulation of Pulmonary Vascular Resistance in Patients With Heart Failure
|