Clinical Trials Logo

Clinical Trial Details — Status: Withdrawn

Administrative data

NCT number NCT00464451
Other study ID # Dex for Ped EEG
Secondary ID
Status Withdrawn
Phase Phase 2
First received April 19, 2007
Last updated November 1, 2016
Start date August 2009
Est. completion date May 2011

Study information

Verified date November 2016
Source Wesley Medical Center
Contact n/a
Is FDA regulated No
Health authority United States: Food and Drug Administration
Study type Interventional

Clinical Trial Summary

The purpose of the study is:

1. To compare the efficacy of dexmedetomidine versus chloral hydrate as pediatric sedation agents for EEG studies. Efficacy will be determined by successful EEG study completion and by minimum degree of sedation induced patient agitation (SAS score).

2. To compare the safety and adverse event profile of dexmedetomidine versus chloral hydrate during sedation of pediatric patients for EEG studies. Comparison will be based on variance of vital signs (HR, MAP, RR, O2SAT, ETCO2) from baseline during sedation as well as the frequency of adverse events during and following sedation.

3. To compare quality of EEG recording obtained with dexmedetomidine or chloral hydrate and to those of non-sedated pediatric EEG studies. Quality will be determined by the degree of background beta-wave activity.


Description:

Pediatric patients undergoing EEG studies often require sedation because of failure to stay still during recording of EEG (the difficulty in them obtaining a sleep state on their own during a specific time for the procedure). The ideal sedation agent (for an EEG) should have a rapid onset of action, moderate duration of effect, minimal or absent side-effect profile and a minimal or no effect on EEG quality. Historically, chloral hydrate has been the oral agent of choice for sedating pediatric patients for EEGs. However, chloral hydrate use has been fraught with many problems such as sedation failure, drug-enhanced background beta-wave activity affecting EEG quality, and (especially in pediatric patients) an unpleasant intoxicated-like experience while recovering from sedation. Uncommon but specific adverse events associated with the use of chloral hydrate include gastric irritation causing nausea, vomiting, diarrhea; residual sleepiness or "hangover"; rashes, fever, dizziness, ataxia; disorientation, paradoxical excitement, and respiratory depression (especially when combined with other sedatives or narcotics). Side effect profile and drug interference in EEG quality of chloral hydrate necessitates looking for alternate agent for EEG sedation. Clonidine has been shown to have better safety profile and lack of drug effect on EEG quality in Autistic children when compared to chloral hydrate. The beneficial effects of clonidine have been ascribed to its alpha-2 receptor agonist activity. We believe new alpha-2 agonist dexmedetomidine should have better safety profile with minimal or no effect in EEG quality because of its selective action on alpha-2 receptor.

Compared with clonidine, dexmedetomidine is more specific for the alpha-2 receptor and has a shorter elimination half-life. It produces dose-dependent sedation, anxiolysis and analgesia without respiratory depression.

Dexmedetomidine produces an unusually cooperative form of sedation, in which patients easily transition from sleep to wakefulness and then back to sleep when not stimulated. Its use is associated with less disinhibition than what has commonly been associated with other sedation agents like propofol and the benzodiazepines. Hemodynamic effects of dexmedetomidine result from peripheral and central mechanisms (peripheral vascular smooth muscle constriction, diminished central sympathetic outflow, and an increase in vagal activity) with a net result of significant reduction in circulating catecholamines, modest reduction in blood pressure, and a modest reduction in heart rate. Alpha-2 agonists have been shown to have minimal effects on ventilation in both healthy volunteers as well as in ICU patients. The benign effect of this class of drug on ventilatory drive is underscored by the approval of dexmedetomidine by the FDA as the only critical care sedative recommended for continuous use after extubation. Although alpha-2 agonists attenuate responses to stress, including neurohumoral responses, short term use of dexmedetomidine (<24 hours) does not significantly reduce serum cortisol levels. Bioavailability studies have demonstrated dexmedetomidine to be well absorbed systemically through the oral mucosa (up to 82 % compared to IV administration) and therefore, buccal dosing may provide an effective, noninvasive route to administer the drug. Orally administered dexmedetomidine has been successfully utilized as a pre-medication for pediatric procedural sedation or anesthetic induction to lessen anxiety and psychological impact of procedures with a dose range of 1-4.2 micrograms/kg (mean dose: 2.6 +/- 0.83 micrograms/kg). A large portion of the subjects in this study had neurobehavioral disorders and all were spontaneously breathing, non-intubated patients. None of the subjects experienced clinically significant changes in their cardiorespiratory parameters. Another study demonstrated successful sedation and analgesia is spontaneously breathing, non-intubated post-cardiothoracic surgery patients (ages 1 month to 21 years of age) with IV infusion of dexmedetomidine. No significant change in respiratory rate was noted. While several pediatric studies have explored the use of dexmedetomidine for post-operative and procedural sedation / analgesia in children with favorable results, it is not currently approved by the FDA for procedural sedation in children. Uncommon but specific adverse events associated with the use of dexmedetomidine include hypertension, hypotension, bradycardia, tachycardia, nausea, vomiting, fever, anemia, and hypoxia.

In summary, dexmedetomidine has the potential to be a good sedative agent for procedural and non procedural sedation in children, in part because of its favorable side-effect profile, minimal effect on respiratory drive, and minimal emergence agitation after the procedure. In addition, its sublingual bioavailability makes it attractive as an alternate oral agent for EEG sedation. It causes natural sleep; and because children may be intentionally aroused during its sedation and then resume sleep when not stimulated, it allows for complete EEG recordings containing awake, drowsy and sleep states.

We hypothesize that the use of dexmedetomidine for sedation in pediatric EEG studies will be more efficacious than chloral hydrate with a superior safety profile, patient tolerance and acceptance. We also hypothesize that the use of dexmedetomidine will minimize the degree of drug-enhanced background Beta-activity in sedated EEG recordings.


Recruitment information / eligibility

Status Withdrawn
Enrollment 0
Est. completion date May 2011
Est. primary completion date December 2010
Accepts healthy volunteers No
Gender Both
Age group 4 Months to 18 Years
Eligibility Inclusion Criteria:

1. EEG study patients

2. Age less than 18 years

3. No contraindication for the use of chloral hydrate or dexmedetomidine

Exclusion Criteria:

1. Active, uncontrolled Gastroesophageal Reflux Disease (GERD)

2. Active, uncontrolled vomiting

3. Current history of apnea requiring apnea monitoring

4. Active, current respiratory issues that are different from the baseline status

5. Unstable cardiac status

6. Craniofacial anomaly with risk of inadequate bag-valve-mask ventilation

7. Current use of digoxin, betablockers, or calcium channel blockers

8. Current, active cerebral vascular disease

9. Patient treated with clonidine within the preceding one month

10. Prior history of drug reaction or sedation failure with either drug

Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator), Primary Purpose: Treatment


Related Conditions & MeSH terms


Intervention

Drug:
Dexmedetomidine
Dexmedetomidine 3 micrograms per kilogram per os; subsequent dose of 1 microgram per kilogram per os if necessary to treat inadequate sedation 30 minutes following initial dosing.
Chloral hydrate
Chloral hydrate 75 milligrams per kilogram per os; subsequent dose of 25 milligrams per kilogram per os if necessary to treat inadequate sedation 30 minutes following initial dosing.

Locations

Country Name City State
United States Pediatric Sedation Unit, Wesley Medical Center Wichita Kansas

Sponsors (2)

Lead Sponsor Collaborator
Wesley Medical Center Hospira, Inc.

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Sedation success with EEG study completion 2 hours No
Primary Degree of sedation medication induces patient agitation. 4 hours Yes
Primary Variance of vital signs from baseline during medication induced sedation for EEG study 4 hours Yes
Primary Time to recovery from sedation. 4 hours Yes
Primary Occurrence of adverse events. 24 hours Yes
Secondary EEG record quality (degree of background beta-wave activity, levels of consciousness achieved, and degree of movement artifact) between sedated and non-sedated groups. 2 hours No
See also
  Status Clinical Trial Phase
Recruiting NCT03692390 - Virtual Reality vs. Standard-of-Care for Comfort Before and After Sedation in the Emergency Department N/A
Completed NCT02145169 - Inhaled Nitrous Oxide for the Prevention of Emergence Reaction During Ketamine Administration in Adults, a Pilot Study N/A
Recruiting NCT05595798 - EEG Spectral Pattern of Deep Sedation-induced Airway Adverse Effects
Completed NCT01260662 - Randomized Clinical Trial of Propofol, 1:1 and 4:1 Combination of Propofol and Ketamine for Procedural Sedation Phase 4
Completed NCT00784498 - Procedural Sedation Using Propofol Versus Midazolam/Ketamine in the Adult Emergency Department Phase 4
Completed NCT00327392 - A Safety Study of AQUAVAN® (Fospropofol Disodium) Injection for Sedation During Minor Surgical Procedures. Phase 2/Phase 3
Recruiting NCT04873596 - Dexmedetomidine and Midazolam Nebulization as Sedation During Cesarean Delivery in Pre-eclampsia Phase 2
Completed NCT03329014 - A Trial of Intranasal Remimazolam Pharmacokinetics, Pharmacodynamics, Safety and Bioavailability Phase 1
Recruiting NCT06414395 - The Effects of Different Loading Doses of Dexmedetomidine on The Bispectral Index-Guided Propofol Sedation in Patients Undergoing Advanced Upper Gastrointestinal Endoscopic Procedures: A Randomized Control Study Phase 4
Recruiting NCT03860831 - Intranasal Ketamine and Midazolam Mixture for Procedural Sedation in Children With Mental Disabilities: Phase 1
Completed NCT00869440 - Dose-Finding Safety Study Evaluating Remimazolam (CNS 7056) in Patients Undergoing Diagnostic Upper GI Endoscopy Phase 2
Not yet recruiting NCT05757622 - Electroencephalogram Based Real-Time Sedation Level Prediction
Completed NCT03799783 - The Use of Dexmedetomidine for EEG Sedation in Children With Behavioural Disorders Phase 2
Completed NCT02180737 - Dexmedetomidine for Sedation During Radiological Interventional Procedures Phase 4
Not yet recruiting NCT01227174 - Safety and Efficacy of Propofol Only Sedation in Oral and Maxillofacial Surgery Phase 4
Recruiting NCT03499886 - Low-Dose Intravenous Ketamine Bolus Versus Conventional Technique Phase 2/Phase 3
Completed NCT03747432 - Comparison of Procedural Sedation With Propofol and Dexmedetomidine During Transcatheter Aortic Valve Implantation Phase 4
Recruiting NCT06203522 - Factors Associated With Successful Completion of MRI in Children Undergoing a Vigil Sedation With Dexmedetomidin
Withdrawn NCT05783492 - INK Feasibility Study Phase 3
Recruiting NCT04686448 - Ketofol Versus Fenofol as Procedural Sedation for Carpal Tunnel Release Phase 1/Phase 2