Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04372953
Other study ID # POLAR #60303
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date May 4, 2021
Est. completion date May 30, 2028

Study information

Verified date March 2024
Source Murdoch Childrens Research Institute
Contact David Tingay, MBBS FRACP
Phone +61 3 9345 4023
Email david.tingay@rch.org.au
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Premature babies often need help immediately after birth to open their lungs to air, start breathing and keep their hearts beating. Opening their lungs can be difficult, and once open the under-developed lungs of premature babies will often collapse again between each breath. To prevent this nearly all premature babies receive some form of mechanical respiratory support to aid breathing. Common to all types of respiratory support is the delivery of a treatment called positive end-expiratory pressure, or PEEP. PEEP gives air, or a mixture of air and oxygen, to the lung between each breath to keep the lungs open and stop them collapsing. Currently, clinicians do not have enough evidence on the right amount, or level, of PEEP to give at birth. As a result, doctors around the world give different amounts (or levels) of PEEP to premature babies at birth. In this study, the Investigators will look at 2 different approaches to PEEP to help premature babies during their first breaths at birth. At the moment, the Investigators do not know if one is better than the other. One is to give the same PEEP level to the lungs. The others is to give a high PEEP level at birth when the lungs are hardest to open and then decrease the PEEP later once the lungs are opened and the baby is breathing. Very premature babies have a risk of long-term lung disease (chronic lung disease). The more breathing support a premature baby needs, the more likely the risk of developing chronic lung disease. The Investigators want to find out whether one method of opening the baby's lungs at birth results in them needing less breathing support. This research has been initiated by a group of doctors from Australia, the Netherlands and the USA, all who look after premature babies.


Description:

All infants born <29 weeks' postmenstrual age (PMA) require positive end-expiratory pressure (PEEP) at birth. PEEP is a simple, feasible and cost-effective therapy to support extremely preterm infants that is used globally. The effective and safe level of PEEP to use after preterm birth remains the most important unanswered question in neonatal respiratory medicine. The Investigators will undertake an international multi-centre randomised controlled trial to address in extremely preterm infants, whether the use of a high, dynamic PEEP level strategy to support the lung during stabilisation ('resuscitation') at birth, compared to the current practice of a static PEEP level, will reduce the rate of death or bronchopulmonary dysplasia (BPD). This trial will address the following four key knowledge gaps: 1. Assessing whether individualising (dynamic) PEEP is superior to static PEEP 2. The uncertainty regarding applied pressure strategies to support the lung during stabilisation at birth arising from the lack of a properly powered, well-designed randomised trial specifically addressing important outcomes for respiratory support in the Delivery Room 3. The optimal PEEP strategy to use 4. Determining the differential effects of PEEP at different gestational ages. For this study, the term PEEP refers to the delivery of positive pressure (via a bias flow of gas) to the lungs during expiration by any method of assisted respiratory support, this includes: 1. Continuous Positive Applied Pressure (CPAP; a method of non-invasive respiratory support). During CPAP no other type of positive pressure is delivered as the infant supports tidal ventilation using her/his own spontaneous breathing effort. PEEP during CPAP has also been called 'continuous distending pressure. 2. Positive Pressure Ventilation (PPV). During PPV PEEP is delivered between periods of an applied inflating pressure (PIP) delivered at a clinician-determined rate. PPV can be delivered via a mask or other non-invasive interface (also termed non-invasive positive pressure ventilation; NIPPV), or via an endotracheal tube (often termed continuous mechanical ventilation; CMV). 3. High-frequency oscillatory ventilation (HFOV) or high-frequency jet ventilation. These are modes of invasive PPV in which PIP is delivered at very fast rates (>120 inflations per minute) and at very small tidal volumes. During HFOV a mean airway pressure is determined by the clinician which is equivalent to the PEEP during other modes. During high-frequency jet ventilation the clinician sets a PEEP similar to CMV. As all of these modes of ventilation have a similar goal of applying a pressure to the lung during expiration (usually to prevent lung collapse) the term PEEP has the same physiological result despite different methods of application. The specific aim of the trial is to establish whether the use of a high, dynamic 8-12 cmH2O PEEP level ('dynamic') strategy to support the lung during stabilisation at birth, compared with a static 5-6 cmH2O PEEP level ('static') strategy, increases the rate of survival without bronchopulmonary dysplasia (BPD) in extremely preterm infants born <29 weeks' PMA, and reduces rates of common neonatal morbidities. The Investigators hypothesise that in preterm infants born <29 weeks PMA who receive respiratory support during stabilisation at birth, a high, dynamic PEEP strategy (i.e. PEEP 8-12 cmH2O individualised to clinical need) as compared to a standard, static PEEP of 5-6 cmH2O, will: 1. Increase survival without BPD (primary outcome); and 2. Reduce rates of common neonatal morbidities such as failure of non-invasive respiratory support in the first 72 hours of life (secondary outcome). This trial is a phase III/IV, two parallel group, non-blinded, 1:1 randomised controlled, multi-national, multi-centre study comparing dynamic PEEP (dynamic group) with standard PEEP strategy (static group). The intervention will take place in the Delivery Room. The intervention period will be from the time of birth until 20 minutes of life or transfer from Delivery Room to NICU (whatever comes first). The follow-up period will extend to 36 weeks PMA (primary endpoint), and 24 months corrected GA to determine important long-term neurodevelopmental and respiratory outcomes. The clinical team within the Delivery Room managing enrolled and randomised infants will not be masked/blinded to the intervention. Clinicians need to be able to see the PEEP delivery device to assess efficacy of pressure delivery. The Research Coordinator/Study team at site will also not be masked/blinded to the intervention, as they will be entering trial data into the data management system. Research staff based at the central Trial Coordinating Centre (TCC), the Data Coordinating Centre (DCCe) and the trial statistician will be blinded to assigned treatment. There will be a total of 906 infants recruited (453 in the Dynamic group, 453 in the Static group), over 25 recruitment centres across Australia, Europe, the United Kingdom, the Middle East, Canada and North America. The study will have Regional Coordinating Centres (RCCs) established in the following jurisdictions: 1. Australia - The Murdoch Children's Research Institute/Royal Women's Hospital, Melbourne, AUS 2. The Netherlands - Amsterdam University Medical Centre, Netherlands, EU 3. The United Kingdom - The University of Oxford / National Perinatal Epidemiology Unit (NPEU), Oxford, UK, and 4. North America - the Hospital of the University of Pennsylvania, Pennsylvania, USA.


Recruitment information / eligibility

Status Recruiting
Enrollment 906
Est. completion date May 30, 2028
Est. primary completion date November 30, 2026
Accepts healthy volunteers No
Gender All
Age group 23 Weeks to 28 Weeks
Eligibility Inclusion Criteria: - Infants born between 23 weeks 0 days and 28 weeks 6 days PMA (by best obstetric estimate). - Receives respiratory intervention (resuscitation) at birth with CPAP and/or positive pressure ventilation in the Delivery Room, to support transition and/or respiratory failure related to prematurity. - Has a parent or other legally acceptable representative capable of understanding the informed consent document and providing consent on the participant's behalf either prospectively or after birth and randomisation if prenatal consent was not possible (at sites where the Ethics Committee permits waiver of prospective consent). Exclusion Criteria: - Not for active care based on assessment of the attending clinician or family decision - Anticipated severe pulmonary hypoplasia due to rupture of membranes <22 weeks with anhydramnios or fetal hydrops - Major congenital anomaly or anticipated alternative cause for respiratory failure - Refusal of informed consent by their legally acceptable representative - Does not have a guardian who can provide informed consent.

Study Design


Related Conditions & MeSH terms


Intervention

Procedure:
Positive End-Expiratory Pressure (PEEP)
PEEP is the delivery of any level of positive pressure to the lungs during expiration, by any method of assisted respiratory support. As the intervention in the Delivery Room PEEP will be administered via any of: Continuous Positive Applied Pressure (CPAP; non-invasive respiratory support) During CPAP, no other type of positive pressure is delivered as the infant supports tidal ventilation using her/his own spontaneous breathing effort. Positive Pressure Ventilation (PPV) During PPV, PEEP is delivered between periods of an applied inflating pressure (PIP) delivered at a clinician-determined rate. PPV can be delivered via a mask or other non-invasive interface (also termed non-invasive positive pressure ventilation; NIPPV), or via an endotracheal tube (often termed continuous mechanical ventilation; CMV).

Locations

Country Name City State
Australia Women & Childrens Hospital Adelaide Adelaide South Australia
Australia Joan Kirner Women & Children's Hospital - VIC Melbourne Victoria
Australia The Royal Women's Hospital, Melbourne Australia Parkville Victoria
Australia Mater Misericordiae South Brisbane Queensland
Australia King Edward Memorial Hospital Subiaco Western Australia
Austria Academic Teaching Hospital Feldkirch
France Antoine Beclere Medical Center / South Paris University Hospitals Paris
Italy Careggi Hospital Florence
Italy Ospedale Maggiore Policlinico Milan
Italy Vittore Buzzi Children's Hospital / Ospedale dei Bambini Milan
Italy San Gerardo Hospital Monza Milan
Italy Gemelli University Hospital Rome
Italy Filippo del Ponte Hospital Varese Milan
Netherlands Amsterdam University Medical Centre Amsterdam
Netherlands Amalia Children's Hospital Radboudumc Nijmegen
Netherlands Maxima Medical Centre Veldhoven
Poland Poznan University of Medical Sciences Poznan Poznan
United Kingdom Birmingham Heartlands Hospital Birmingham England
United Kingdom Southmead Hospital Bristol England
United Kingdom Royal Infirmary Edinburgh Edinburgh Scotland
United Kingdom Royal Hospital for Children Glasgow Scotland
United Kingdom University Hospitals Leicester Leicester
United Kingdom James Cook University Hospital Middlesbrough England
United Kingdom University Hospital Wishaw Wishaw Scotland
United States Indiana University / Riley Children Health at Indiana University Health Indianapolis Indiana
United States University of Arkansas for Medical Sciences Little Rock Arkansas
United States Hospital of the University of Pennsylvania Philadelphia Pennsylvania
United States Rady Children's at Rancho Springs Medical Center/UCSD San Diego California
United States Rady Children's at Scripps Memorial Hospital La Jolla/UCSD San Diego California
United States Sharp Mary Birch Hospital for Women & Newborns San Diego California

Sponsors (4)

Lead Sponsor Collaborator
Murdoch Childrens Research Institute Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA), University of Oxford, University of Pennsylvania

Countries where clinical trial is conducted

United States,  Australia,  Austria,  France,  Italy,  Netherlands,  Poland,  United Kingdom, 

References & Publications (1)

Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, Kirpalani H, Laughon MM, Poindexter BB, Duncan AF, Yoder BA, Eichenwald EC, DeMauro SB. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019 Sep 15;200(6):751-759. doi: 10.1164/rccm.201812-2348OC. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary The prevalence of the composite outcome of either death or bronchopulmonary dysplasia (BPD), as assessed by standard oxygen reduction test. This is defined as the proportion of participants in the analysis set with a confirmed death date or a diagnosis of bronchopulmonary dysplasia (BPD), at 36 weeks post menstrual age. At 36 weeks post menstrual age.
Secondary The rate/incidence of failure of non-invasive ventilation in first 72 hours, as assessed by intubation status. This is defined as the proportion of participants in the analysis set requiring invasive ventilation (i.e. insertion of a Endotracheal Tube (ETT) within the first 72 hours after birth. From the time of birth until 72 hours post birth.
Secondary The rate/incidence of death within the first 10 days of life, as assessed by date of death. This is defined as the proportion of participants in the analysis set having dies within the first 10 days post birth. From the time of birth until 10 days post birth.
Secondary Oxygen requirement =50% for 3 or more consecutive hours in first 72 hours This is defined as highest FiO2 applied for 3 or more consecutive hours in the first 72 hours of age. From the time of birth until 72 hours post birth.
Secondary Supplementary oxygen use This is defined as highest FiO2 in the delivery room, and then at 24 hours, 72 hours, 7 days and 10 days of age. From the time of birth until 10 days of age.
Secondary The rate/incidence of surfactant therapy requirement within the first 72 hours of life, as assessed by surfactant therapy status. This is defined as the proportion of participants in the analysis set requiring surfactant therapy within the first 72 hours post birth. From the time of birth until 72 hours post birth.
Secondary The rate/incidence of grade 3 and 4 intraventricular haemorrhage within the first 72 hours of life, as defined via imaging. This is defined as the proportion of participants in the analysis set requiring experiencing a grade 3 or 4 intraventricular haemorrhage, within the first 72 hours post birth. From the time of birth until 72 hours post birth.
Secondary The rate/incidence of treatment failure within the delivery room, as assessed by intubation status. This is defined as the proportion of participants in the analysis set requiring intubation (i.e. insertion of a Endotracheal Tube (ETT) within the delivery room, but prior to transfer to NICU. From the time of birth through transfer to NICU (within two hours from birth)
Secondary The grade of bronchopulmonary dysplasia (BPD), based on the results of an oxygen reduction test. This is defined as the grade bronchopulmonary dysplasia (BPD) assigned according to the results of an oxygen reduction test and mode or respiratory support at 36 weeks PMA (see Jensen et al Am J Resp Crit Care Med 2019;200:751-759). At 36 weeks post menstrual age.
Secondary Incidence of Death at 36 week PMA This is defined as death at 36 weeks PMA (individual component of primary outcome) At 36 weeks post menstrual age.
Secondary Incidence of Bronchopulmonary dysplasia (BPD) at 36 week PMA This is defined as the incidence of BPD at 36 weeks PMA (individual component of primary outcome) At 36 weeks post menstrual age.
Secondary Incidence of air leak and/or pulmonary interstitial emphysema (defined on chest radiograph; CXR) in the first 10 days after birth Any airleak, defined as Pneumothorax, pulmonary interstitial emphysema and/or pneumomediastimum, diagnosed by chest radiology within the first 10 days after birth. Birth to 10 days of age.
Secondary Airleak Any airleak, defined as Pneumothorax, pulmonary interstitial emphysema and/or pneumomediastimum, diagnosed by chest radiology. Airleak will be coded as occurring in the delivery room, in first 10 days of life, during hospital stay and if requiring drainage (e.g. via a chest tube) During hospital stay, on average until 36 weeks PMA.
Secondary Retinopathy of prematurity (stage 3 or higher or requiring treatment) Defined as retinopathy of prematurity (stage 3 or higher or requiring treatment) diagnosed by ophthalmological examination at or before 36-week corrected PMA 36-week corrected PMA.
Secondary Significant brain injury (IVH grade 3 or 4, periventricular leukomalacia) Significant brain injury (IVH grade 3 or 4, periventricular leukomalacia) at or before 36-week corrected PMA as assessed by ultrasound or MRI cranial imaging. 36-week corrected PMA.
Secondary Invasive ventilation at day 10 of age The rates of invasive ventilation (placement of an endotracheal tube for >4 hours) by day 7 and 10 of age First 10 days after birth.
Secondary Highest PEEP used during non-invasive ventilation Defined as the highest PEEP used during non-invasive ventilation in the NICU (after delivery room management) at 24 hours, 72 hours, 7 and 10 days of age. Birth to 10 days of age.
Secondary Duration of respiratory support Defined as the total number of days of all forms of respiratory support (supplementary oxygen therapy, non-invasive and invasive ventilation) 36 week PMA.
Secondary Postnatal steroid use Defined as the incidence of one or more course of postnatal steroids for the treatment of BPD 36 week PMA.
Secondary Inotrope use Defined as the incidence of the administration of one or more inotropic agent by continuous infusion (not as a resuscitative agent) for more than 1 hour. 36 week PMA.
Secondary Length of stay in hospital Defined as the total number of completed days in hospital related to the initial admission for management of preterm birth. Up to 44 weeks PMA
Secondary Oxygen requirement at discharge to home Defined as the incidence of infants being discharged home on any form of oxygen therapy Up to 44 weeks PMA
Secondary Patent ductus arteriosus requiring medical or surgical therapy in first 72 hours Defined as the incidence of patent ductus arteriosus requiring medical or surgical therapy in first 72 hours 72 hours of age.
Secondary Meeting the protocol criteria for failure of non-invasive ventilation during the intervention period This is defined as the proportion of participants in the analysis set who met the criteria for requiring invasive ventilation (i.e. insertion of a Endotracheal Tube (ETT) within the first 72 hours after birth. Up to the first 20 minutes after commencing respiratory support following birth.
See also
  Status Clinical Trial Phase
Not yet recruiting NCT05934318 - L-ArGinine to pRevent advErse prEgnancy Outcomes (AGREE) N/A
Completed NCT05502510 - Assessing the Effectiveness and Efficacy of the MyHealthyPregnancy Application
Not yet recruiting NCT03418311 - Cervical Pessary Treatment for Prevention of s PTB in Twin Pregnancies on Children`s Long-Term Outcome N/A
Not yet recruiting NCT03418012 - Prevention of sPTB With Early Cervical Pessary Treatment in Women at High Risk for PTB N/A
Completed NCT02993744 - Maternal Inflammatory Parameters Within Routine Treatment With Betamethasone N/A
Active, not recruiting NCT02673216 - Infection and Adverse Pregnancy Outcome
Completed NCT01683565 - Preemie Tots: A Pilot Study to Understand the Effects of Prematurity in Toddlerhood Phase 4
Completed NCT01412931 - Protein and Ultrasound Indicators of Preterm Birth N/A
Completed NCT01460576 - Improving Prematurity-Related Respiratory Outcomes at Vanderbilt N/A
Completed NCT02606058 - The Australian Placental Transfusion Study (APTS): Should Very Pre Term Babies Receive a Placental Blood Transfusion at Birth Via Deferring Cord Clamping Versus Standard Cord Clamping Procedures? N/A
Terminated NCT03715530 - Use of Placental Alpha Microglobulin-1(PAMG-1) to Diagnose Premature Rupture of Membranes in Pregnant Women N/A
Completed NCT00422526 - Progesterone for Prevention of Preterm Birth in Women With Short Cervix: Randomized Controlled Trial Phase 3
Enrolling by invitation NCT04251260 - Effectiveness of Positioning in Preterm Neonates N/A
Completed NCT03668860 - India Dexamethasone and Betamethasone Phase 1
Recruiting NCT03638037 - Correlation Between Maternal Vitamin D Level And Preterm Birth
Completed NCT02225353 - Efficacy Study of a Cervical Pessary Containing Progesterone for the Prevention of Preterm Delivery Phase 2
Recruiting NCT03992534 - The FLIP-1 Study: Vaginal Lactobacillus Supplementation in Women at High Risk of Preterm Birth Phase 1
Completed NCT03144141 - Association Between EHG and Risk of Preterm Delivery in Women Hospitalized for Threatened Premature Delivery N/A
Completed NCT05210985 - Examination of the Relationship Between Home Affordances With Development
Completed NCT04021654 - What is the Future of Vulnerable New-borns