Clinical Trials Logo

Philadelphia Chromosome clinical trials

View clinical trials related to Philadelphia Chromosome.

Filter by:

NCT ID: NCT03739814 Recruiting - Clinical trials for Recurrent B Acute Lymphoblastic Leukemia

Inotuzumab Ozogamicin and Blinatumomab in Treating Patients With Newly Diagnosed, Recurrent, or Refractory CD22-Positive B-Lineage Acute Lymphoblastic Leukemia

Start date: May 8, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well inotuzumab ozogamicin and blinatumomab work in treating patients with CD22-positive B-lineage acute lymphoblastic leukemia that is newly diagnosed, has come back, or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as inotuzumab ozogamicin and blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03698552 Recruiting - Clinical trials for Recurrent B Acute Lymphoblastic Leukemia

ADCT-602 in Treating Patients With Recurrent or Refractory B-cell Acute Lymphoblastic Leukemia

Start date: August 24, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of ADCT-602 in treating patients with B-cell lymphoblastic leukemia that has come back or does not respond to treatment. Monoclonal antibodies, such as ADCT-602, may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03624530 Recruiting - Clinical trials for Minimal Residual Disease

Effect of Prophylactic TKI Therapy Post-transplants on Ph+ ALL Undergoing Allo-HSCT With MRD Positive Pre-transplants

Start date: August 2018
Phase: Phase 2/Phase 3
Study type: Interventional

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in early first complete remission improves the long-term outcomes for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Relapse remains a major cause of treatment failure even after allo-HSCT. The prevention of relapse is essential for improving the outcome of Ph+ ALL. Our previous clinical trial (ID: NCT01883219) demonstrated that pre-emptive tyrosine kinase inhibitor (TKIs) administration based on minimal residual disease (MRD) and BCR-ABL mutation after allo-HSCT might reduce the incidence of relapses and improve survival for patients with Ph+ ALL. Moreover, our result suggested that Ph+ ALL with MRD positive pre-transplants had the higher rate of molecular biology relapse. In this study, we will evaluate the safety and efficacy of prophylactic TKI therapy post-transplants on Ph+ ALL undergoing allo-HSCT with MRD positive pre-transplants.

NCT ID: NCT03595917 Recruiting - Clinical trials for B-cell Acute Lymphoblastic Leukemia

ABL001 + Dasatinib + Prednisone + Blinatumomab in BCR-ABL+ B-ALL or CML

Start date: July 24, 2018
Phase: Phase 1
Study type: Interventional

This research study is evaluating a drug called ABL001 taken in combination with dasatinib (Sprycel®) and prednisone (a steroid) as a possible treatment for B-cell Acute Lymphoblastic Leukemia that is BCR-ABL positive (BCR-ABL+ B-ALL) or Chronic Myeloid Leukemia (CML) in lymphoid blast crisis. BCR-ABL+ B-ALL is also called Philadelphia chromosome positive Acute Lymphoblastic Leukemia (Ph+ ALL). It is expected that 25-40 people will take part in this research study. - ABL001 - Dasatinib (Sprycel®) - Prednisone - Blinatumomab

NCT ID: NCT03589729 Recruiting - Clinical trials for Acute Myeloid Leukemia

Dexrazoxane Hydrochloride in Preventing Heart-Related Side Effects of Chemotherapy in Participants With Blood Cancers

Start date: September 19, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well dexrazoxane hydrochloride works in preventing heart-related side effects of chemotherapy in participants with blood cancers, such as acute myeloid leukemia, myelodysplastic syndrome, chronic myeloid leukemia, and myeloproliferative neoplasms. Chemoprotective drugs, such as dexrazoxane hydrochloride, may protect the heart from the side effects of drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and gemtuzumab ozogamicin, in participants with blood cancers.

NCT ID: NCT03512405 Recruiting - Clinical trials for Refractory Acute Lymphoblastic Leukemia

Pembrolizumab and Blinatumomab in Treating Participants With Recurrent or Refractory Acute Lymphoblastic Leukemia

Start date: August 2, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II studies the side effects of pembrolizumab and blinatumomab and to see how well they work in treating participants with acute lymphoblastic leukemia that has come back or has not responded to the treatment. Monoclonal antibodies, such as pembrolizumab and blinatumomab, may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03459534 Recruiting - Clinical trials for Chronic Myeloid Leukemia, Chronic Phase

A Phase 3 Study for the Efficacy and Safety of Radotinib in CP-CML Patients With Failure or Intolerance to Previous TKIs

Start date: June 25, 2018
Phase: Phase 3
Study type: Interventional

In a multinational, multicenter, single-arm, open-label and Phase III Radotinib clinical study, chronic phase Ph+ chronic myeloid leukemia patients with failure or intolerance to previous TKIs therapy including Imatinib will be recruited. In this phase 3 study, 173 subjects are expected to be enrolled in a single arm with the administration of Radotinib 400mg twice daily, which includes 10% of dropout rate.

NCT ID: NCT03318770 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Post-Frontline Sequential Treatment of Adult Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

Start date: May 10, 2019
Phase:
Study type: Observational

The primary objective of the present study is to evaluate the long-term observation, in terms of overall survival, of adult Ph+ ALL patients treated frontline with the sequential administration of dasatinib and the bispecific monoclonal antibody blinatumomab according to GIMEMA protocol LAL2116.

NCT ID: NCT03263572 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Blinatumomab, Methotrexate, Cytarabine, and Ponatinib in Treating Patients With Philadelphia Chromosome-Positive, or BCR-ABL Positive, or Relapsed/Refractory, Acute Lymphoblastic Leukemia

Start date: November 29, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.

NCT ID: NCT03241940 Recruiting - Clinical trials for Recurrent Adult Acute Lymphoblastic Leukemia

Phase I Dose Escalation Study of CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults With Recurrent or Refractory B Cell Malignancies

Start date: October 20, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the best dose and side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy, and to see how well they work in treating children or young adults with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD19/CD22-CAR T cells and chemotherapy may work better in treating children or young adults with B acute lymphoblastic leukemia.