Clinical Trials Logo

Clinical Trial Summary

Since 2005, FDA has required almost all new drugs be tested for their ability to prolong the QT interval through clinical studies. This requirement stems from the increased TdP risk QT interval prolongation can cause. However, the QT interval is an imperfect biomarker, as there are multiple drugs that can prolong the QT interval, without causing increased TdP occurrence. As such, numerous drugs labeled as causing QT prolongation, may in fact have no impact on TdP occurrence. To address this problem, FDA, in collaboration with multiple external partners, has led an initiative to combine novel preclinical in vitro experiments within silico modeling and simulation followed by pharmacodynamic electrocardiographic (ECG) biomarkers. The goal is to use these novel computational and analytical tools to better predict TdP risk (beyond just the QT interval) by focusing on understanding the underlying mechanisms and applying an integrated biological systems approach. This clinical study consists of 2 parts: a 3-arm, 22-subject crossover study (Part 1) and a 4-arm, 22-subject crossover study (Part 2). These parts are included in the same protocol and study due to the similarity of the inclusion and exclusion criteria, similar procedures, and similar primary goals.


Clinical Trial Description

The risk of drug-induced Torsades de Pointes (TdP), a potentially fatal ventricular arrhythmia, has resulted in multiple drugs worldwide being removed from the market, as well as over 150 drugs being listed on CredibleMeds.org for QT prolongation or TdP association. In response, since 2005, FDA has required almost all new drugs be tested for their ability to prolong the QT interval through clinical studies. This requirement stems from the increased TdP risk QT interval prolongation can cause. However, the QT interval is an imperfect biomarker, as there are multiple drugs that can prolong the QT interval, without causing increased TdP occurrence. As such, numerous drugs labeled as causing QT prolongation, may in fact have no impact on TdP occurrence. While this labeling affects physician prescribing, it also has the potential to limit effective therapeutic options for patients. To address this problem, FDA, in collaboration with multiple external partners, has led an initiative to combine novel preclinical in vitro experiments within silico modeling and simulation followed by pharmacodynamic electrocardiographic (ECG) biomarkers. The goal is to use these novel computational and analytical tools to better predict TdP risk (beyond just the QT interval) by focusing on understanding the underlying mechanisms and applying an integrated biological systems approach. Recently, the International Council on Harmonization (ICH) released a new Guideline with updated Questions and Answers (Q&As) to the clinical (ICH E14) and nonclinical (ICH S7B) Guidelines for assessing the QT prolongation and proarrhythmic risk of non-antiarrhythmic drugs. The Q&A provides more guidance on the use of an integrated nonclinical analysis to support clinical QT assessment. This includes the comparison of the hERG safety margin of the investigational product to the safety margin of predominant hERG (the human Ether-à-go-go-Related Gene) blockers with a characterization of the concentration-QTc relationship based on a limited set of example drugs, i.e., ondansetron, moxifloxacin and dofetilide. This clinical study consists of 2 parts: a 3-arm, 22-subject crossover study (Part 1) and a 4-arm, 22-subject crossover study (Part 2). These parts are included in the same protocol and study due to the similarity of the inclusion and exclusion criteria, similar procedures, and similar primary goals. Part 1: Intermediate risk predominant hERG blocking drugs The FDA performed a literature review and identified 28 proarrhythmic drugs from available in vitro studies of cardiac ion channel IC50 (using HEK293 cells and the hERG 1a subunit). Two of these drugs, classified as intermediate risk "predominant hERG blocking" (pimozide and clarithromycin), have been identified as candidates for evaluation in Part 1. An aim of this study will be generating higher quality QT data on "intermediate risk" "predominant hERG" blocking drugs' effect on both electrocardiographic biomarkers, QTc and J-Tpeakc interval prolongation, at therapeutic and supratherapeutic exposures. These data will also be used to support assessment of the hERG safety margin threshold together with moxifloxacin, dofetilide, and ondansetron as described in the recently released ICH Q&A's. Part 2: Combination of hERG and multi-ion channel block Part 2 of this study will assess the effects of a mixed ion channel blocking drug, cobicistat, on the QTc and J-Tpeakc interval alone and in combination with a predominant hERG blocking drug (moxifloxacin). Clinical data with cobicistat, a structural analog of ritonavir used as a pharmacokinetic enhancer in various anti-viral regimens, has demonstrated QTc shortening and PR prolongation with supratherapeutic doses. Whether this is a results of late sodium block, calcium channel block, or other features is unclear. Additional clinical data with cobicistat alone or in combination with moxifloxacin will enhance our understanding of the effects of mixed ion channel blocking on electrocardiographic biomarkers (QTc and J-Tpeakc interval). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05716854
Study type Interventional
Source Food and Drug Administration (FDA)
Contact
Status Completed
Phase Phase 1
Start date March 21, 2023
Completion date June 13, 2023

See also
  Status Clinical Trial Phase
Completed NCT04092725 - Study to Evaluate the Effect of SCY-078 on the PK of Dabigatran in Healthy Subjects Phase 1
Completed NCT04181008 - Pharmacokinetics of Amiloride Nasal Spray in Healthy Volunteers Early Phase 1
Active, not recruiting NCT03258151 - Association of Genetic Polymorphisms With Docetaxel-based Chemotherapy Toxicities in Chinese Solid Tumor Patients
Completed NCT04406415 - Oral Nafamostat in Healthy Volunteers Phase 1
Not yet recruiting NCT05421312 - Periarticular Penetration of Cefazolin and Clindamycin in Second Stage Revision Arthroplasty of the Hip Phase 4
Completed NCT02534753 - A Pharmacokinetics Study of Intravenous Ascorbic Acid Phase 1
Completed NCT01682408 - Assess Pharmacokinetics of Fostamatinib in Fed and Fasted State in Combination With Ranitidine to Assess Bioavailability Phase 1
Completed NCT01976078 - Development of Voriconazole Pharmacokinetics and Metabolism in Children and Adolescents N/A
Completed NCT01636024 - To Assess the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Ascending Doses of Inhaled AZD7594 Phase 1
Completed NCT01208155 - Study in Healthy Males to Assess Bioavailability of 4 Different Fostamatinib Tablets Phase 1
Completed NCT01415102 - A First In Human Study In Healthy People To Evaluate Safety, Toleration And Time Course Of Plasma Concentration Of Single Inhaled Doses Of PF-05212372. Phase 1
Completed NCT01214941 - Effect of Itraconazole and Ticlopidine on the Pharmacokinetics and Pharmacodynamics of Oral Tramadol Phase 4
Completed NCT01260025 - Tolerability and Pharmacokinetics of M2ES in the Treatment of Advanced Solid Tumor Phase 1
Completed NCT00856570 - A Clinical Study to Determine the Effect of YM178 on the Pharmacokinetics of Warfarin in Healthy Subjects Phase 1
Completed NCT01276119 - The First Clinical Study to Test Safety, Blood Levels and Other Effects of CDP6038 in Healthy Males Phase 1
Completed NCT00983242 - Drug-Drug Interaction Between Colchicine and Verapamil ER Phase 1
Completed NCT00730145 - A Single Dose Study Investigating The Elimination Of PD-0332334 In Patients Receiving Regular Hemodialysis Phase 1
Completed NCT00984009 - A Drug-Food Interaction Study Between Colchicine and Grapefruit Juice Phase 1
Completed NCT00747721 - Pharmacokinetics of Dexmedetomidine During Prolonged Infusion in ICU Phase 1
Completed NCT00746499 - Pharmacokinetic Study of Raltegravir in Healthy Premenopausal Women. Phase 1