Paresis Clinical Trial
Official title:
Transcutaneous Auricular Vagus Nerve Stimulation: Motor Learning & Mechanisms
Vagus nerve stimulation (VNS) is thought to activate neural pathways that release chemicals which promote plasticity and learning. Previous work has shown that the auricular branch of the vagus nerve innervates landmarks on the external ear. Work from the PI's laboratory has shown that electrical current applied to the external ear modulates physiological indexes of brain states implicated in the therapeutic effects of VNS. The broad objective of this project is to better understand physiological mechanisms modulated by auricular stimulation to support possible therapeutic effects in the form of motor learning.
Existing evidence supports the use of VNS to enhance the effects of traditional therapy on impairments due to neurological injury. It is known that the vagus nerve forms contacts with neuromodulatory nuclei in the brainstem that release of chemicals shown to be critically involved in attentional control and memory formation. It is also known that the auricular branch of the vagus nerve innervates portions of the external ear providing a possible means to engage similar neural pathways noninvasively via transcutaneous auricular vagus nerve stimulation (taVNS). Recent work from the PI's laboratory shows that electrical current applied to landmarks on the external ear elicits transient effects on pupil dilation, an established physiological index of brain states that support learning. Given the ability to engage the biomarker, the investigators aim to further investigate physiological mechanisms modulated by taVNS and possible effects on learning. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT01116544 -
Treatment of Chronic Stroke With AMES + EMG Biofeedback
|
N/A | |
Recruiting |
NCT06010823 -
Safety and Efficacy Evaluation of the Robotic Enhanced Error Training of Upper Limb Function in Post-stroke and Post TBI Participants
|
N/A | |
Recruiting |
NCT00785343 -
Study of Robot-assisted Arm Therapy for Acute Stroke Patients
|
Phase 1 | |
Recruiting |
NCT05152433 -
Evidence-Based Robot-Assistant in Neurorehabilitation
|
N/A | |
Terminated |
NCT04266158 -
FAME: Functional Assessment of a Myoelectric Orthosis Hand Orthoses
|
N/A | |
Completed |
NCT02577276 -
Evaluation of a Tele-Rehabilitation Service Program
|
N/A | |
Recruiting |
NCT02208219 -
Music Therapy to Restore Motor Deficits After Stroke
|
N/A | |
Completed |
NCT03728036 -
What do Stroke Survivors Actually Learn When Regaining Walking Ability After Stroke? The TARGET Phase I Study
|
||
Completed |
NCT03727919 -
Exoskeleton-assisted Training to Accelerate Walking Recovery Early After Stroke: the TARGET Phase II Study
|
N/A | |
Completed |
NCT02725853 -
Enhancing Recovery of Arm Movement in Stroke Patients
|
N/A | |
Recruiting |
NCT01579604 -
Nerve Transfer Reconstruction in the Tetraplegic Upper Extremity
|
Phase 4 | |
Completed |
NCT02059070 -
Bupivacaine Versus Ropivacaine on Diaphragmatic Motility and Ventilatory Function
|
N/A | |
Recruiting |
NCT03270852 -
Enhanced Reality for Hemiparetic Arm in the Stroke Patients
|
N/A | |
Terminated |
NCT05316519 -
Transcutaneous Auricular Vagus Nerve Stimulation to Enhance Motor Learning
|
N/A | |
Terminated |
NCT04005235 -
FOT Assessment of Hemi-diaphragm Dysfunction After Upper Extremity Nerve Blocks
|
||
Completed |
NCT02066948 -
Meal Patterning on Weight Loss With Changes to Body Comp, Muscle and Metabolic Health
|
N/A | |
Completed |
NCT00833105 -
Rehabilitation of the Upper Extremity With Enhanced Proprioceptive Feedback Following Incomplete Spinal Cord Injury
|
N/A | |
Completed |
NCT00212394 -
Tourniquet Complications in Orthopaedic Surgery
|
N/A | |
Completed |
NCT03026712 -
Hemiparetic Arm Robotic Mobilization With Non Invasive Electrical Stimulation
|
N/A | |
Completed |
NCT01205464 -
Effects of Doxycycline on Persistent Symptoms Post-neuroborreliosis
|
N/A |