Pancreatic Cancer Clinical Trial
— LIPACOfficial title:
Pre- and Postoperative Incidence and Prognostic Implication of Positive Peritoneal Lavage and Circulating Tumor DNA in Patients With Pancreatic Cancer
Pancreatic cancer (PC) is a deadly disease and surgical resection of the tumor is the only hope of cure. Approximately 20-25% of the PC patients are candidates for intended curative resection, but despite microscopically radical resection the majority of patients will have recurrent disease within 2 years. This indicates that most patients will harbour non-detected (i.e. occult) cancer cells at the time of resection. Studies suggest that free tumor cells in the peritoneum and in the blood are part of this occult disease burden, and that patients with such findings should not be operated but treated as having metastatic disease. However, the exact incidence of these tumor cells in an unselected cohort of patients undergoing pancreatic resection is unknown, and the potential impact on postoperative survival is also uncertain. In recent years, molecular biomarkers are increasingly being regarded as both predictive and prognostic tools for cancer patients. This study will use the most optimal available methods to investigate the incidence of biomarkers for tumor cells in the peritoneum and blood in PC patients, and to relate these findings to the final outcome of the resected patients. This project has become highly relevant since new treatment methods (i.e. Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC)) may be used to eradicate free tumor cells. A recent systematic review and meta-analysis demonstrated that PC patients with positive peritoneal cytology (Cy+) had a significant poorer survival than patients with negative peritoneal cytology (Cy-) (HR 3.18), and the authors concluded that Cy+ patients should not undergo surgery. This conclusion was supported by a significant lower overall survival and a higher peritoneal recurrence rate after resection of Cy+ patients when compared to Cy- patients. Agreement that Cy+ in resectable PDAC is a negative predictor of prognosis came from another recent meta-analysis and systematic review. However, this study also indicated that the median OS was worse in patients without than in those with resection among patients with Cy+, thereby emphasizing need of further careful assessment of indications for radical resection in Cy+ patients. KRAS mutations have been detected in circulating tumor DNA (ctDNA) in the blood (liquid biopsies) from patients with metastatic PC, and ctDNA is considered a marker of poor prognosis. Similar, KRAS mutations were found in the plasma of one-third of patients with a resectable tumor, and ctDNA positive (ctDNA+) patients had a significantly poorer overall survival (13.6 months vs 27.6 months, p<0.0001). Similar conclusions were drawn in recent systematic reviews and meta-analyses, while one study failed to confirm these results. The detection of KRAS mutations in cell-free DNA has also been identified as a prognostic biomarker in PC patients. If looking at studies including all stages of PC patients, the prevalence of KRAS mutations in liquid biopsies was 40.8%, and these mutations had a negative impact on overall survival with a HR of 3.16. Different ctDNA detection methods have been used, however the recent introduction of digital droplet PCR (ddPCR), a new robust PCR method for quantifying low-abundance point mutations in cell-free circulating DNA, shows promising results and offers increased sensitivity and reproducibility relative to quantitative PCR (qPCR). The treatment of resectable, locally advanced and metastatic PC has changed significantly over the past few years. New chemotherapy regimens have improved survival in metastatic PC, and these regimens (+/- radiation therapy) are presently being tested in both resectable and locally advanced PC with promising preliminary results. In theory, these new regimens may be potentially effective against ctDNA in PC patients, whereas the effect on peritoneal lavage positive (PLF+) PC patients is more speculative due to the low intraperitoneal concentrations of systemic chemotherapy. However, the latter problem may be solved by using Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) which allows better intraperitoneal distribution, concentration and accumulation of chemotherapy, without the systemic side effects. It may be speculated that the highly sensitive ddPCR of KRAS may be a better tool for PLF+ detection when focusing on PC patients, as up to 95% of these harbour mutations in this gene. So far, only very few studies used PCR to evaluate KRAS mutations in PLF in PC patients. Main study aims are: 1. We aim to investigate the incidence of PLF+ and KRAS ctDNA in the blood from an unselected cohort of PC patients scheduled for attempted curative surgery. 2. Secondly, we will study the prognostic impact of PLF+ and KRAS ctDNA positivity in PC patients.
Status | Recruiting |
Enrollment | 200 |
Est. completion date | December 31, 2024 |
Est. primary completion date | June 30, 2023 |
Accepts healthy volunteers | |
Gender | All |
Age group | 20 Years to 100 Years |
Eligibility | - Inclusion criteria: Patients diagnosed with pancreatic cancer (adenocarcinoma) on a pancreatic resection specimen Age > 18 years Exclusion Criteria: - Duodenal carcinoma, ampullary carcinoma, bile duct cancer - Benign surgical diagnosis - Pregnancy |
Country | Name | City | State |
---|---|---|---|
Denmark | Odense University Hospital | Odense |
Lead Sponsor | Collaborator |
---|---|
Sonke Detlefsen | Karolinska Institutet, Martin-Luther-Universität Halle-Wittenberg, University Hospital Schleswig-Holstein |
Denmark,
Cao F, Li J, Li A, Li F. Prognostic significance of positive peritoneal cytology in resectable pancreatic cancer: a systemic review and meta-analysis. Oncotarget. 2017 Feb 28;8(9):15004-15013. doi: 10.18632/oncotarget.14745. Review. — View Citation
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011 May 12;364(19):1817-25. doi: 10.1056/NEJMoa1011923. — View Citation
Creemers A, Krausz S, Strijker M, van der Wel MJ, Soer EC, Reinten RJ, Besselink MG, Wilmink JW, van de Vijver MJ, van Noesel CJM, Verheij J, Meijer SL, Dijk F, Bijlsma MF, van Oijen MGH, van Laarhoven HWM. Clinical value of ctDNA in upper-GI cancers: A systematic review and meta-analysis. Biochim Biophys Acta Rev Cancer. 2017 Dec;1868(2):394-403. doi: 10.1016/j.bbcan.2017.08.002. Epub 2017 Aug 8. Review. — View Citation
Crepaldi-Filho R, Palma RT, Giusti MF, Bueno Mde A, Silva PS, Waisberg J. Levels of carcinoembryonic antigen and CA 19-9 in the sera and peritoneal washing of patients undergoing surgical treatment for gastric carcinoma. Arq Gastroenterol. 2008 Jul-Sep;45(3):219-24. — View Citation
Gemenetzis G, Groot VP, Blair AB, Laheru DA, Zheng L, Narang AK, Fishman EK, Hruban RH, Yu J, Burkhart RA, Cameron JL, Weiss MJ, Wolfgang CL, He J. Survival in Locally Advanced Pancreatic Cancer After Neoadjuvant Therapy and Surgical Resection. Ann Surg. 2019 Aug;270(2):340-347. doi: 10.1097/SLA.0000000000002753. — View Citation
Grass F, Vuagniaux A, Teixeira-Farinha H, Lehmann K, Demartines N, Hübner M. Systematic review of pressurized intraperitoneal aerosol chemotherapy for the treatment of advanced peritoneal carcinomatosis. Br J Surg. 2017 May;104(6):669-678. doi: 10.1002/bjs.10521. Review. — View Citation
Graversen M, Detlefsen S, Bjerregaard JK, Fristrup CW, Pfeiffer P, Mortensen MB. Prospective, single-center implementation and response evaluation of pressurized intraperitoneal aerosol chemotherapy (PIPAC) for peritoneal metastasis. Ther Adv Med Oncol. 2018 Jun 1;10:1758835918777036. doi: 10.1177/1758835918777036. eCollection 2018. — View Citation
Graversen M, Detlefsen S, Bjerregaard JK, Pfeiffer P, Mortensen MB. Peritoneal metastasis from pancreatic cancer treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Clin Exp Metastasis. 2017 Jun;34(5):309-314. doi: 10.1007/s10585-017-9849-7. Epub 2017 May 17. — View Citation
Graversen, M., et al., Adjuvant Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) in resected high-risk colon cancer patients - study protocol for the PIPAC-OPC3 Trial. A prospective, controlled phase 2 Study. Pleura Peritoneum, 2018. 3(2): p. 20180107
Graversen, M., et al., Detection of free intraperitoneal tumour cells in peritoneal lavage fluid from patients with peritoneal metastasis before and after treatment with pressurised intraperitoneal aerosol chemotherapy (PIPAC). J Clin Pathol, 2019. 72(5): p. 368-372.
Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, Haley LM, Yu J, Burkhart RA, Hasanain A, Debeljak M, Kamiyama H, Narang A, Laheru DA, Zheng L, Lin MT, Gocke CD, Fishman EK, Hruban RH, Goggins MG, Molenaar IQ, Cameron JL, Weiss MJ, Velculescu VE, He J, Wolfgang CL, Eshleman JR. Circulating Tumor DNA as a Clinical Test in Resected Pancreatic Cancer. Clin Cancer Res. 2019 Aug 15;25(16):4973-4984. doi: 10.1158/1078-0432.CCR-19-0197. Epub 2019 May 29. — View Citation
Hadano N, Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, Sueda T, Hiyama E. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016 Jun 28;115(1):59-65. doi: 10.1038/bjc.2016.175. Epub 2016 Jun 9. — View Citation
Harris M, Chung F. Complications of general anesthesia. Clin Plast Surg. 2013 Oct;40(4):503-13. doi: 10.1016/j.cps.2013.07.001. Epub 2013 Aug 1. Review. — View Citation
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011 Nov 15;83(22):8604-10. doi: 10.1021/ac202028g. Epub 2011 Oct 28. — View Citation
Hoskovec D, Varga J, Konecná E, Antos F. Levels of CEA and Ca 19 - 9 in the sera and peritoneal cavity in patients with gastric and pancreatic cancers. Acta Cir Bras. 2012 Jun;27(6):410-6. — View Citation
Hruban, R.H., et al., Digestive System Tumours. 2019, World Health Organization: Lyon (France). p. 322-332.
Kristensen AT, Wiig JN, Larsen SG, Giercksky KE, Ekstrøm PO. Molecular detection (k-ras) of exfoliated tumour cells in the pelvis is a prognostic factor after resection of rectal cancer? BMC Cancer. 2008 Jul 27;8:213. doi: 10.1186/1471-2407-8-213. — View Citation
Li T, Zheng Y, Sun H, Zhuang R, Liu J, Liu T, Cai W. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis. Med Oncol. 2016 Jul;33(7):61. doi: 10.1007/s12032-016-0777-1. Epub 2016 May 25. Review. — View Citation
Mulcahy HE, Lyautey J, Lederrey C, qi Chen X, Anker P, Alstead EM, Ballinger A, Farthing MJ, Stroun M. A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res. 1998 Feb;4(2):271-5. — View Citation
Nomoto S, Nakao A, Kasai Y, Inoue S, Harada A, Nonami T, Takagi H. Peritoneal washing cytology combined with immunocytochemical staining and detecting mutant K-ras in pancreatic cancer: comparison of the sensitivity and availability of various methods. Pancreas. 1997 Mar;14(2):126-32. — View Citation
Perets R, Greenberg O, Shentzer T, Semenisty V, Epelbaum R, Bick T, Sarji S, Ben-Izhak O, Sabo E, Hershkovitz D. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring. Oncologist. 2018 May;23(5):566-572. doi: 10.1634/theoncologist.2017-0467. Epub 2018 Jan 25. — View Citation
Rall CJ, Rivera JA, Centeno BA, Fernandez-del Castillo C, Rattner DW, Warshaw AL, Rustgi AK. Peritoneal exfoliative cytology and Ki-ras mutational analysis in patients with pancreatic adenocarcinoma. Cancer Lett. 1995 Nov 6;97(2):203-11. — View Citation
Satoi S, Murakami Y, Motoi F, Uemura K, Kawai M, Kurata M, Sho M, Matsumoto I, Yanagimoto H, Yamamoto T, Mizuma M, Unno M, Hashimoto Y, Hirono S, Yamaue H, Honda G, Nagai M, Nakajima Y, Shinzeki M, Fukumoto T, Kwon AH. Reappraisal of peritoneal washing cytology in 984 patients with pancreatic ductal adenocarcinoma who underwent margin-negative resection. J Gastrointest Surg. 2015 Jan;19(1):6-14; discussion 14. doi: 10.1007/s11605-014-2637-7. Epub 2014 Oct 15. — View Citation
Schlitter AM, Segler A, Steiger K, Michalski CW, Jäger C, Konukiewitz B, Pfarr N, Endris V, Bettstetter M, Kong B, Regel I, Kleeff J, Klöppel G, Esposito I. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes. Sci Rep. 2017 Feb 1;7:41064. doi: 10.1038/srep41064. — View Citation
Sergeant G, Roskams T, van Pelt J, Houtmeyers F, Aerts R, Topal B. Perioperative cancer cell dissemination detected with a real-time RT-PCR assay for EpCAM is not associated with worse prognosis in pancreatic ductal adenocarcinoma. BMC Cancer. 2011 Jan 31;11:47. doi: 10.1186/1471-2407-11-47. — View Citation
Steen W, Blom R, Busch O, Gerhards M, Besselink M, Dijk F, Festen S. Prognostic value of occult tumor cells obtained by peritoneal lavage in patients with resectable pancreatic cancer and no ascites: A systematic review. J Surg Oncol. 2016 Nov;114(6):743-751. doi: 10.1002/jso.24402. Epub 2016 Sep 19. Review. — View Citation
Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N, Suzuki M, Furukawa E, Kato M, Hayashi H, Kohno T, Ueno H, Shimada K, Okusaka T, Nakagama H, Shibata T, Yachida S. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015 Dec 16;5:18425. doi: 10.1038/srep18425. — View Citation
Uemura T, Hibi K, Kaneko T, Takeda S, Inoue S, Okochi O, Nagasaka T, Nakao A. Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients. J Gastroenterol. 2004 Jan;39(1):56-60. — View Citation
Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, Mollaee M, Wagner KU, Koduru P, Yopp A, Choti MA, Yeo CJ, McCue P, White MA, Knudsen ES. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015 Apr 9;6:6744. doi: 10.1038/ncomms7744. — View Citation
Yamada T, Nakamori S, Ohzato H, Oshima S, Aoki T, Higaki N, Sugimoto K, Akagi K, Fujiwara Y, Nishisho I, Sakon M, Gotoh M, Monden M. Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res. 1998 Jun;4(6):1527-32. — View Citation
Yamashita K, Kuba T, Shinoda H, Takahashi E, Okayasu I. Detection of K-ras point mutations in the supernatants of peritoneal and pleural effusions for diagnosis complementary to cytologic examination. Am J Clin Pathol. 1998 Jun;109(6):704-11. — View Citation
Yin, Z., T. Ma, and S. Chen, Intraoperative Peritoneal Washing Cytology on Survival in Pancreatic Ductal Adenocarcinoma With Resectable, Locally Advanced, and Metastatic Disease. Pancreas, 2019. 48(4): p. 519-525
Zambon C, Navaglia F, Basso D, Gallo N, Greco E, Piva MG, Fogar P, Pasquali C, Pedrazzoli S, Plebani M. ME-PCR for the identification of mutated K-ras in serum and bile of pancreatic cancer patients: an unsatisfactory technique for clinical applications. Clin Chim Acta. 2000 Dec;302(1-2):35-48. — View Citation
Zhuang R, Li S, Li Q, Guo X, Shen F, Sun H, Liu T. The prognostic value of KRAS mutation by cell-free DNA in cancer patients: A systematic review and meta-analysis. PLoS One. 2017 Aug 10;12(8):e0182562. doi: 10.1371/journal.pone.0182562. eCollection 2017. Review. — View Citation
* Note: There are 34 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Relative frequency of ctDNA in peritoneal lavage and peripheral blood | Percentage | 2 years | |
Secondary | Prognostic value of ctDNA in peritoneal lavage and peripheral blood | Survival | 2 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05305001 -
Germline Mutations Associated With Hereditary Pancreatic Cancer in Unselected Patients With Pancreatic Cancer in Mexico
|
||
Completed |
NCT02526017 -
Study of Cabiralizumab in Combination With Nivolumab in Patients With Selected Advanced Cancers
|
Phase 1 | |
Recruiting |
NCT05497531 -
Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers
|
N/A | |
Recruiting |
NCT04927780 -
Perioperative or Adjuvant mFOLFIRINOX for Resectable Pancreatic Cancer
|
Phase 3 | |
Recruiting |
NCT06054984 -
TCR-T Cells in the Treatment of Advanced Pancreatic Cancer
|
Early Phase 1 | |
Recruiting |
NCT05919537 -
Study of an Anti-HER3 Antibody, HMBD-001, With or Without Chemotherapy in Patients With Solid Tumors Harboring an NRG1 Fusion or HER3 Mutation
|
Phase 1 | |
Terminated |
NCT03140670 -
Maintenance Rucaparib in BRCA1, BRCA2 or PALB2 Mutated Pancreatic Cancer That Has Not Progressed on Platinum-based Therapy
|
Phase 2 | |
Terminated |
NCT00529113 -
Study With Gemcitabine and RTA 402 for Patients With Unresectable Pancreatic Cancer
|
Phase 1 | |
Recruiting |
NCT05168527 -
The First Line Treatment of Fruquintinib Combined With Albumin Paclitaxel and Gemcitabine in Pancreatic Cancer Patients
|
Phase 2 | |
Active, not recruiting |
NCT04383210 -
Study of Seribantumab in Adult Patients With NRG1 Gene Fusion Positive Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT05391126 -
GENOCARE: A Prospective, Randomized Clinical Trial of Genotype-Guided Dosing Versus Usual Care
|
N/A | |
Terminated |
NCT03300921 -
A Phase Ib Pharmacodynamic Study of Neoadjuvant Paricalcitol in Resectable Pancreatic Cancer A Phase Ib Pharmacodynamic Study of Neoadjuvant Paricalcitol in Resectable Pancreatic Cancer
|
Phase 1 | |
Completed |
NCT03153410 -
Pilot Study With CY, Pembrolizumab, GVAX, and IMC-CS4 (LY3022855) in Patients With Borderline Resectable Adenocarcinoma of the Pancreas
|
Early Phase 1 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT05679583 -
Preoperative Stereotactic Body Radiation Therapy in Patients With Resectable Pancreatic Cancer
|
Phase 2 | |
Recruiting |
NCT04183478 -
The Efficacy and Safety of K-001 in the Treatment of Advanced Pancreatic Cancer
|
Phase 2/Phase 3 | |
Terminated |
NCT03600623 -
Folfirinox or Gemcitabine-Nab Paclitaxel Followed by Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer
|
Early Phase 1 | |
Recruiting |
NCT04584008 -
Targeted Agent Evaluation in Digestive Cancers in China Based on Molecular Characteristics
|
N/A | |
Recruiting |
NCT05351983 -
Patient-derived Organoids Drug Screen in Pancreatic Cancer
|
N/A | |
Completed |
NCT04290364 -
Early Palliative Care in Pancreatic Cancer - a Quasi-experimental Study
|