Clinical Trials Logo

Clinical Trial Summary

Time to defibrillation is the most important predictor of survival in cardiac arrest. Traditional emergency medical system response is often to slow. The overall aim of this pilot study is to evaluate if drones can deliver Automated external defibrillators (AEDs) to the scene of suspected out-of-hospital cardiac arrest (OHCA) prior to ambulance arrival with clinically relevant time benefits.


Clinical Trial Description

This is an observational, non-randomized single group assignment study with the primary purpose of evaluating proportion of AED-delivery prior to ambulance arrival and time benefits. Totally, five AED-equipped drones will be placed in hangars at five different sites covering a geographic area of about 200 km2 and approximately 125,000 inhabitants for dispatch to suspected cases of OHCA as a complement to standard care i.e., ambulance. By coordinating the operations with local Air Traffic Control (ATC), the risk of airspace conflicts, or in worst case collisions, is mitigated to an acceptable level. The investigators estimate to enroll some 80 alerts and 60 participants during a study period of up to 14 months. The investigators will closely follow and study the potential of delivering AEDs prior ambulance arrival and timesaving effects as compared to ambulance during a period of up to 14 months in which the investigators will follow and study the potential of delivering AEDs prior ambulance arrival and timesaving effects as compared to ambulance. The drone operator, Everdrone, has integrated all software and hardware for the concept on the DJI Matrice 600 Pro drone. Examples of added features: an integrated Parachute Rescue System (validated by independent third party using the ASTM F3322 - 18 standard), a high precision sense and avoid system and a winching device to safely lower the AED to ground at delivery. Furthermore, Everdrone AB has fully integrated their system and operational routines with the dispatch central, emergency medical services and aviation organizations. As a result from the previous study (version 1.0) a number of hardware and software improvements have been made to the system (version 2.0): Five hangars will be setup at optimal locations in each of the five administrative areas. Hangars are large isolated tents 4x4 meters in where the drone is placed, remotely operated and surveiled by camera. Hangars are within fenced areas so that the public has no access. They are equipped with weather stations and an automated gate which automatically will open on alert. When an emergency 112-call is answered it is indexed by the dispatcher depending on the patients condition. If an OHCA is suspected, the dispatcher indexes the event as a)"ongoing cardio-pulmonary resuscitation (CPR)" or b) "Unconscious with abnormal or absent breathing". If an emergency call is identified within administrative areas AND indexed as "a" or "b" an automated (not manual as with ambulance alerts) alert is sent via radio-alert to the drone operator. This triggers: - boot-up of the drone - drone hangar gate opening - route-planning of the mission - weather condition confirmation - remote pilot acceptance of the mission - remote pilot calling ATC for takeoff approval The drone system receives an alert from the dispatch center and the drone takes off from the hangar after approval from the drone pilot. For safety reasons all beyond visual line of sight (BVLOS) flights are done within the controlled airspace of Säve airport approval from ATC granted for every single flight. Each flight will be carried out at 60-80 meters of altitude, have a preliminary maximum flight speed of 70 km/h, and a maximum range of 6 km one-way. The drone system is remotely deployed and surveiled from the drone operating center at Everdrone Säve Airport, the drone is dispatched alongside ambulance as a complement to standard care. The drone systems are designed to operate in dry conditions with median winds not exceeding 8 m/s and primarily during daylight conditions. The AED used is an ultra-light AED (FRED Easyport from Schiller), weighting totally 800 grams with basket and siren. Upon arrival onsite the basket with the AED will be winched down from about 30 m altitude and delivered within 10 meters from the object i.e., the front door or onsite in public areas. Local AED drone support after completed mission includes electrode change battery test, potentially pic-up up the drone after dispatch by the Everdrone personnel. Dispatch of the drone in suspected OHCA cases will be executed as a complement to standard care i.e., ambulance between 21 April to 1 June 2022, totally up to 14 months of full-scale real-life flights to suspected OHCA victims. Based on historical data of OHCA from the Swedish register for cardiopulmonary resuscitation (SRCR) and first ever dispatch of AED-equipped drones during 2020 the drone systems will be alerted in an estimated 80 cases (about 3.5 flights/ week) of suspected OHCA over the study period. In about 25% of cases, predefined exclusion criteria (rain, median wind > 8 m/s, high rise buildings >20m, pre-flight checklists not OK) will presumably prohibit flights, thus making an estimated 60 cases eligible for inclusion (i.e., drone takes off to deliver AEDs in suspected OHCA.) For more details about the methods please see the research protocol. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04723368
Study type Interventional
Source Karolinska Institutet
Contact
Status Completed
Phase N/A
Start date April 21, 2021
Completion date June 1, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT05434910 - Blood Pressure and Cerebral Blood Flow After Cardiac Arrest N/A
Active, not recruiting NCT03700125 - Pre-hospital ECMO in Advanced Resuscitation in Patients With Refractory Cardiac Arrest. ( SUB30 ) N/A
Completed NCT02527694 - CPR Quality Between Flexible Stretcher and Standard Stretcher in OHCA N/A
Completed NCT02899507 - Prophylactic Antibiotics in Comatose Survivors of Out-of-hospital Cardiac Arrest Phase 4
Recruiting NCT02184468 - Survival Study After Out-of-hospital Cardiac Arrest N/A
Completed NCT04085692 - Dispatcher-Assisted CPR: Low-Dose, High-Frequency Simulation-Based Training N/A
Recruiting NCT05029167 - REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study) N/A
Completed NCT04080986 - DOuble SEquential External Defibrillation for Refractory VF N/A
Completed NCT04058925 - Tissue Oxygenation During Cardiopulmonary Resuscitation as a Predictor of Return of Spontaneous Circulation
Enrolling by invitation NCT05113706 - Does Bystanders Emotional State Influence Dispatcher-assisted Cardiopulmonary?Resuscitation
Completed NCT04219306 - Machine Learning Assisted Recognition of Out-of-Hospital Cardiac Arrest During Emergency Calls. N/A
Completed NCT03881865 - P25/30 SSEPs and Neurological Prognosis After Cardiac Arrest
Recruiting NCT04993716 - Epidemiological Study on the Management of Out-of-hospital Cardiac Arrest Survivors in Champagne ArDEnnes
Completed NCT05062785 - Dose-Finding Study of Intranasal Insulin in Healthy Participants Insulin in Healthy Participants Phase 1
Recruiting NCT06122337 - Systemic Evaluation of the Etiologies of Young Adults With Non-traumatic Out-of-hospital Cardiac Arrest
Not yet recruiting NCT04584463 - Factors Associated With CPC 1-2 in 110 Patients Admitted in French ICU for a Myocardial Infarction Complicated by an OHCA.
Recruiting NCT03355885 - Early-onset Pneumonia After Out-of-hospital Cardiac Arrest N/A
Recruiting NCT05132387 - Wroclaw Out-Of-Hospital Cardiac Arrest Registry
Not yet recruiting NCT05969028 - First Responder Airway & Compression Rate Trial N/A
Recruiting NCT02827422 - A Prospective, Multicenter Registry With Targeted Temperature Management After Out-of-hospital Cardiac Arrest in Korea N/A