Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05875077
Other study ID # MD-62-2022
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date May 1, 2022
Est. completion date February 1, 2024

Study information

Verified date August 2023
Source Cairo University
Contact BESHOY ATEF
Phone 01220703346
Email beshoyatef01@gmail.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Post-operative nausea and vomiting are a leading cause of recovery room delays and low patient satisfaction. Complications such as suture line tension, wound hemorrhage and dehiscence, elevated intracranial pressure, pulmonary aspiration, dehydration, and electrolyte imbalance have been linked to nausea and vomiting. Many studies were done to explore the effects of propofol and dexmedetomidine on the incidence of post operative nausea and vomiting (PONV). In this study, we will compare propofol infusion to dexmedetomidine infusion on the incidence of PONV in patients undergoing ureteroscopic procedures under spinal anesthesia in the age group from 18 to 60 years with more than one risk factor for PONV (female, history of PONV, non-smoking).


Description:

In regional anesthesia, the mechanism of postoperative nausea and vomiting through the effect of hypotension is extremely common. Low blood pressure can cause ischemia in the brain stem, which activates the medulla's circulatory, respiratory, and vomiting centers. According to some researchers, hypotension causes gut ischemia and the release of emetogenic chemicals (such as serotonin) from the intestines. The function of the gastrointestinal tract is similarly altered by neuraxial anesthesia. Local anesthetics suppress the sympathetic nervous system, resulting in unopposed vagal action and gastrointestinal hyperactivity. The effectiveness of vagolytic drugs in relieving nausea during spinal anesthesia has been cited as proof of the mechanism's importance. During regional anesthesia, visceral discomfort is a powerful stimulator of emetic symptoms. Handling abdominal viscera stimulates sensory vagal fibers and activates the vomiting center, causing emesis. Although the specific mechanism by which propofol operates as an antiemetic is unknown, a central mechanism for propofol's antiemetic activity appears to be the most likely, and a peripheral antiemetic effect has also been considered. Because of its broad range of effects, which include anxiolytic, sedative, analgesic, anesthetic-sparing, sympatholytic, and hemodynamic-stabilizing qualities, dexmedetomidine is a powerful 2-adrenergic agonist with prospective applications in clinical anesthesia. The use of dexmedetomidine as an anesthetic adjuvant intraoperative has resulted in significant reductions in the use of opioids and inhalation anesthetics, as well as a decrease in the incidence of emergence agitation, a favorable recovery profile, and a decrease in postoperative pain without adverse hemodynamic effects. The aim of this study is to compare the effects of dexmedetomidine infusion to propofol infusion during spinal anesthesia, on the incidence of postoperative nausea and vomiting in patients undergoing ureteroscopic procedures under spinal anesthesia. Participants will be adults aged 18 to 60 years, scheduled for ureteroscopic procedures under spinal anesthesia. Included participants will be patients aged 18 to 60 years with American Society of Anesthesiologists physical status (ASA) I-II scheduled for a ureteroscopic procedure with more than one risk factor for PONV (female, history of PONV, non-smoking) during our study time frame. Excluded patients are those with contraindications to spinal anesthesia, including infection at the injection site, bleeding diathesis, known left ventricular outflow obstruction, hypovolemia, and increased intracranial pressure, history of allergy or hypersensitivity to propofol or dexmedetomidine, gastrointestinal diseases, e.g., gastroenteritis and gastric ulcers, ear diseases, e.g., infections of the middle and inner ear, liver cirrhosis, those who have received antiemetic drugs within 48 hours before surgery, those undergoing procedure taking more than two hours and patients unwilling to participate. After being accepted into the study, participants' age, gender, weight, medications, special habits (e.g., smoking history), history of PONV, and any other comorbidity will be collected. All subjects will be fasting for 6-8 hours for solids and at least 2 hours for clear fluids. Routine monitoring devices (five lead electrocardiograms, non-invasive blood pressure, and pulse oximetry) will be installed when the patient arrives in the operating room, and baseline mean blood pressure, heart rate, and oxygen saturation data will be collected. Before spinal anesthesia, each patient will be given 500 mL of Ringer solution. In the sitting posture, a 25-gauge spinal needle is used to puncture the L3-L4 interspace under sterile conditions and via the midline route. After the cerebrospinal fluid (CSF) free flow, 12.5-17.5 mg of bupivacaine will be given intrathecally, and patients will be placed in a supine posture and remain horizontal for at least 10 minutes. Patients will be randomly assigned to one of three groups (propofol, dexmedetomidine, or control) and will begin receiving an infusion of either propofol (at a rate of 1 mg/kg/hour), dexmedetomidine (at a rate of 0.5 micrograms/kg/hour with no boluses), or nothing in the control group. Patients will be given 3 liters of oxygen per minute through a nasal cannula after spinal anesthesia. After the sensory block at the level of T10 is confirmed by the lack of sensitivity to pinprick, surgery will begin. The heart rate, oxygen saturation, pulse rate, and mean arterial blood pressure will all be recorded. Mean arterial blood pressure readings will be taken before and after the spinal every 10 minutes till the end of the procedure. Hypotension is defined as a drop in mean arterial blood pressure (more than 20% below baseline) following spinal injection, and it is treated by increasing intravenous fluid administration and administering 2.5-5 milligram increments of ephedrine I.V. (every 3-5 minutes) until the hypotension is resolved. Intraoperatively and up to 6 hours after surgery, the frequency and severity of nausea and vomiting will be monitored using the PONV intensity scale. If the patient has had two or more bouts of nausea and vomiting, he will be given 10 mg of metoclopramide intravenously as a rescue antiemetic. Non steroidal anti inflammatory drugs (NSAIDS) will be used to provide analgesia post-surgery. The Ramsay sedation scale (RSS) will be used to assess the patient's level of sedation, with the sedation score being recorded right before the study medicines are injected and then every 10 minutes until the patient is discharged from the recovery room. The RSS scores are assigned from 1 to 6, with 1 indicating anxious, agitated, and restless behavior, 2 indicating sedation-oriented and tranquil behavior, 3 indicating sedation response to commands, 4 indicating a brisk response to light glabellar tap, 5 indicating a sluggish response to light glabellar tap, and 6 indicating deep sedation with no response.


Recruitment information / eligibility

Status Recruiting
Enrollment 45
Est. completion date February 1, 2024
Est. primary completion date January 1, 2024
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 60 Years
Eligibility Inclusion Criteria: - Patients aged 18 to 60 years - ASA physical status I-II - Scheduled for ureteroscopic procedure - With more than one Risk factor for PONV (female, history of PONV, non-smoking). Exclusion Criteria: - Patients with contraindications for spinal anesthesia including infection at the injection site, bleeding diathesis, known left ventricular outflow obstruction, hypovolemia, and increased intracranial pressure. - History of allergy or hypersensitivity to propofol or dexmedetomidine. - Gastrointestinal diseases e.g. gastroenteritis and gastric ulcers, ear diseases e.g. infections of middle and inner ear, liver cirrhosis. - Those who have received antiemetic drugs within 48 hours before surgery. - Operations lasting more than two hours. - The patient's unwillingness.

Study Design


Related Conditions & MeSH terms

  • Nausea
  • Nausea and Vomiting, Postoperative
  • Postoperative Nausea and Vomiting
  • Vomiting

Intervention

Drug:
Dexmedetomidine
compare the effects of dexmedetomidine infusion to propofol infusion during spinal anesthesia, on the incidence of postoperative nausea and vomiting in patients undergoing ureteroscopic procedures under spinal anesthesia.
Propofol
compare the effects of dexmedetomidine infusion to propofol infusion during spinal anesthesia, on the incidence of postoperative nausea and vomiting in patients undergoing ureteroscopic procedures under spinal anesthesia.

Locations

Country Name City State
Egypt Kasralaini Medical School Cairo

Sponsors (1)

Lead Sponsor Collaborator
Cairo University

Country where clinical trial is conducted

Egypt, 

References & Publications (1)

Myles PS, Wengritzky R. Simplified postoperative nausea and vomiting impact scale for audit and post-discharge review. Br J Anaesth. 2012 Mar;108(3):423-9. doi: 10.1093/bja/aer505. Epub 2012 Jan 29. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary primary outcome Number of PONV episodes in patients undergoing ureteroscopic procedures under spinal anesthesia 6 hours
Secondary secondry outcome heart rate 2 hours
Secondary tertiary outcome arterial blood pressure 2 hours
See also
  Status Clinical Trial Phase
Completed NCT01217190 - Crossover Study Comparing Ondansetron Orally Dissolving Film Strip (ODFS) With Zofran Orally Disintegrating Tablets Phase 1/Phase 2
Recruiting NCT06302673 - The Role Of Laserpuncture For Prevention Of Nausea And Vomiting Post Strabismus Surgery With General Anesthesia In Adult Patients N/A
Recruiting NCT04563494 - The Effects of IV vs Oral Dexamethasone on Postoperative Nausea, Vomiting, and Pain Phase 4
Completed NCT00108095 - A Study To Evaluate An NK-1 Antiemetic For The Prevention Of Post Operative Nausea And Vomiting Phase 2
Not yet recruiting NCT05426278 - The Effect Of Intraoperative Forced Air Warmer Use, On Postoperative Nausea And Vomiting N/A
Withdrawn NCT04954365 - Post Operative Nausea and Vomiting (PONV) Rescue Outcomes After Amisulpride Treatment
Not yet recruiting NCT06356623 - A Risk Prediction Model of Postoperative Nausea and Vomiting in Patients With Liver Cancer
Withdrawn NCT05016076 - Multi-Strategy Intervention for Anesthesia Care of Obese Patients A Factorial Randomized Controlled Trial N/A
Not yet recruiting NCT04899817 - Granisteron Versus Metoclopramide in Laparoscopic Cholecystectomy Phase 4
Completed NCT03338400 - Dexamethasone Administration To Improve Patient Recovery In Ambulatory Vaginal Prolapse Surgery: Is There A Role? Phase 2
Completed NCT05692245 - Dexamethasone vs Ondansetron After Cesarean Delivery Phase 4
Completed NCT03125941 - High vs Low Dose Dexamethasone on Complications in the Immediate Postoperative Phase After Mastectomy Phase 4
Completed NCT00326248 - Casopitant (Oral) And ZOFRAN To Prevent Postoperative Nausea And Vomiting In Women Phase 3
Completed NCT00334152 - Casopitant And ZOFRAN To Prevent Post Operative Nausea And Vomiting In Women Phase 3
Recruiting NCT03586817 - PALONOSETRON X FOSAPREPITANT IN PONV Phase 4
Not yet recruiting NCT06357234 - Aprepitant Treatment to Prevent Postoperative Nausea and Vomiting in Children Undergoing Scoliosis Surgery Phase 2
Completed NCT03045133 - QUALITY OF RECOVERY AFTER INTRAOPERATIVE MORPHINE OR METHADONE Phase 4
Not yet recruiting NCT06410365 - Impact of Intrathecal vs Intravenous Dexmedetomidine Phase 4
Recruiting NCT05474001 - Comparison Between IT Fentanyl and IV Granisetron in Prevention of Vomiting in CS Under Spinal Anesthesia N/A
Enrolling by invitation NCT05439798 - Effect of Palonosetron, Ondansetron and Dexamethasone in the Prevention of Postoperative Nausea and Vomiting Phase 3