Mechanical Ventilation Complication Clinical Trial
Official title:
Does Closed-loop Automated Oxygen Control Reduce the Duration of Mechanical Ventilation? A Randomised Controlled Trial in Ventilated Preterm Infants
Many premature infants require respiratory support in the newborn period. Mechanical ventilation although life-saving is linked to complications for the lungs and other organs and its duration should be kept to a minimum. The use of supplemental oxygen may also increase the risk of comorbidities such as retinopathy of prematurity. Therefore, oxygen saturation levels and the amount of inspired oxygen concentration provided should be continuously monitored. Oxygen control can be performed manually or with the use of a computer software incorporated into the ventilator that is called 'closed loop automated oxygen control'(CLAC). The software uses an algorithm that automatically adjusts the amount of inspired oxygen to maintain oxygen saturation levels in a target range. Evidence suggests that CLAC increases the time spent in the desired oxygen target range but there are no data to determine the effect on important clinical outcomes. A previous study has also demonstrated that CLAC reduces the inspired oxygen concentration more rapidly when compared to manual control. That could help infants come off the ventilator sooner. With this study we want to compare the time preterm infants spend on the ventilator when we use the software to automatically monitor their oxygen levels with those infants whose oxygen is adjusted manually by the clinical team. That could help us understand if the use of automated oxygen control reduces the duration of mechanical ventilation and subsequently the complications related to it.
Status | Recruiting |
Enrollment | 70 |
Est. completion date | August 2024 |
Est. primary completion date | August 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: - Preterm infants less than 31 weeks completed gestation at birth requiring mechanical ventilation and admitted to King's NICU in the first 48 hours after birth Exclusion Criteria: - Preterm infants above 31 weeks completed gestation or term born infants - Infants with major congenital abnormalities |
Country | Name | City | State |
---|---|---|---|
United Kingdom | King's College Hospital NHS Foundation Trust | London |
Lead Sponsor | Collaborator |
---|---|
King's College Hospital NHS Trust | King's College London |
United Kingdom,
Dani C. Automated control of inspired oxygen (FiO2 ) in preterm infants: Literature review. Pediatr Pulmonol. 2019 Mar;54(3):358-363. doi: 10.1002/ppul.24238. Epub 2019 Jan 10. — View Citation
Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, Walsh M, Finer N, Martin RJ. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010 Jul;157(1):69-73. doi: 10.1016/j.jpeds.2010.01.046. Epub 2010 Mar 20. — View Citation
Dimitriou G, Greenough A, Endo A, Cherian S, Rafferty GF. Prediction of extubation failure in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2002 Jan;86(1):F32-5. doi: 10.1136/fn.86.1.f32. — View Citation
Ford SP, Leick-Rude MK, Meinert KA, Anderson B, Sheehan MB, Haney BM, Leeks SR, Simon SD, Jackson JK. Overcoming barriers to oxygen saturation targeting. Pediatrics. 2006 Nov;118 Suppl 2:S177-86. doi: 10.1542/peds.2006-0913P. — View Citation
Greenough A. Long-term respiratory consequences of premature birth at less than 32 weeks of gestation. Early Hum Dev. 2013 Oct;89 Suppl 2:S25-7. doi: 10.1016/j.earlhumdev.2013.07.004. Epub 2013 Jul 30. — View Citation
Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, Cole CH; AVIOx Study Group. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics. 2006 Oct;118(4):1574-82. doi: 10.1542/peds.2005-0413. — View Citation
Hunt KA, Dassios T, Ali K, Greenough A. Prediction of bronchopulmonary dysplasia development. Arch Dis Child Fetal Neonatal Ed. 2018 Nov;103(6):F598-F599. doi: 10.1136/archdischild-2018-315343. Epub 2018 Jun 12. No abstract available. — View Citation
Sink DW, Hope SA, Hagadorn JI. Nurse:patient ratio and achievement of oxygen saturation goals in premature infants. Arch Dis Child Fetal Neonatal Ed. 2011 Mar;96(2):F93-8. doi: 10.1136/adc.2009.178616. Epub 2010 Oct 30. — View Citation
Sturrock S, Ambulkar H, Williams EE, Sweeney S, Bednarczuk NF, Dassios T, Greenough A. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants. Acta Paediatr. 2021 Mar;110(3):833-837. doi: 10.1111/apa.15585. Epub 2020 Oct 6. — View Citation
Sturrock S, Williams E, Dassios T, Greenough A. Closed loop automated oxygen control in neonates-A review. Acta Paediatr. 2020 May;109(5):914-922. doi: 10.1111/apa.15089. Epub 2019 Nov 27. — View Citation
Vliegenthart RJS, van Kaam AH, Aarnoudse-Moens CSH, van Wassenaer AG, Onland W. Duration of mechanical ventilation and neurodevelopment in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019 Nov;104(6):F631-F635. doi: 10.1136/archdischild-2018-315993. Epub 2019 Mar 20. — View Citation
* Note: There are 11 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | The duration of mechanical ventilation | The duration of mechanical ventilation will be measured in median (interquartile range) number of days of ventilation for participants in each group. | Through study completion, an average of 2 years | |
Secondary | The percentage of time spent within target oxygen saturation range. | Target oxygen saturation range for our preterm population is 90-95% as per local guideline. The time spent in target range will be calculated as a percentage of the total time of monitoring. | Through study completion, an average of 2 years | |
Secondary | Number of manual adjustments to the inspired oxygen concentration required by clinical staff. | The number of manual adjustment will be calculated by reviewing the infant's medical records. | Through study completion, an average of 2 years | |
Secondary | Number of days on oxygen. | The number of days each participant will require supplementary oxygen to maintain oxygen saturation levels within target range. | Through study completion, an average of 2 years | |
Secondary | Length of Intensive Care stay | The days each participant is admitted at the Neonatal Intensive Care | Through study completion, an average of 2 years | |
Secondary | A diagnosis of bronchopulmonary dysplasia (BPD) at 36 weeks postmenstrual age | The diagnosis of BPD will be calculated by reviewing the infant's medical records and respiratory status. | Through study completion, an average of 2 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05144607 -
Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies
|
N/A | |
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT05084976 -
Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
|
||
Active, not recruiting |
NCT05886387 -
a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
|
||
Completed |
NCT04429399 -
Lowering PEEP: Weaning From High PEEP Setting
|
N/A | |
Completed |
NCT02249039 -
Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study
|
Phase 1 | |
Recruiting |
NCT02071524 -
Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Completed |
NCT00893763 -
Strategies To Prevent Pneumonia 2 (SToPP2)
|
Phase 2 | |
Terminated |
NCT05056103 -
Automated Secretion Removal in ICU Patients
|
N/A | |
Active, not recruiting |
NCT04558476 -
Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation
|
Phase 2 | |
Recruiting |
NCT05295186 -
PAV Trial During SBT Trial
|
||
Active, not recruiting |
NCT05370248 -
The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient
|
N/A | |
Completed |
NCT04589910 -
Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound.
|
N/A | |
Completed |
NCT04818164 -
Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04193254 -
LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
|
||
Not yet recruiting |
NCT03259854 -
Non Invasive Mechanical Ventilation VERSUS Oxygen MASK
|
N/A | |
Completed |
NCT06332768 -
NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients
|
N/A | |
Not yet recruiting |
NCT03245684 -
Assisted or Controlled Ventilation in Ards (Ascovent)
|
N/A | |
Completed |
NCT03335449 -
Effects on Respiratory Mechanics of Two Different Ventilation Strategies During Robotic-Gynecological Surgery
|
N/A |