Rupture of Anterior Cruciate Ligament Clinical Trial
Official title:
Comparison of the Functional Outcome of Site Peroneus Longus Graft Donors With and Without Distal Stump Suturing of Peroneus Tendon Brevis on ACL Reconstruction Case .
Injury of the Anterior Cruciate Ligament (ACL) is one of the most common sports injuries. The incidence rate reaches 68.6 cases per 100,000 people per year. Management of ACL injuries for individuals who want to return to the level of exercise activity as before, mostly in the form of reconstructive surgery. As many as 60,000 to 175,000 cases of ACL reconstruction per year are carried out in the United States At present, many reconstructive surgeries are performed by taking tendon grafts on the patient's own body (autograft) to then be used instead of the ACL. The most widely used graft sources are Hamstring and Bone-Patellar Tendon-Bone (BPTB) grafts. Other alternative grafts are Quadriceps tendon, Fascia Lata, Iliotibial Band, and Peroneus Longus Tendon. Each graft retrieval technique has advantages and disadvantages. BPTB graft has the best tensile strength and bone union with bone, but the complications of anterior knee pain are also quite common (5-55%). Hamstring grafts and Quadriceps grafts minimize the complications of anterior knee pain, with fairly good tensile strength, but the union of grafts with bone takes longer. The loss of Hamstring tendons also causes a decrease in muscle strength in Hamstring, where Hamstring has an important role in preventing the anterior translation of the tibia Peroneus Longus Tendon graft is an alternative graft developed to minimize complications associated with graft use from the area around the knee. Peroneus Longus tendons also have tensile strength similar to Hamstring tendons. As with other graft extracts, Peroneus Longus tendon graft is also accompanied by complications in the donor site. Possible complications arising from the loss of the Peroneus Longus tendon include ankle instability and decreased flexion strength of the 1st ray and ankle eversion. Research carried out by Bancha et al showed a reduction in flexion strength of 1st ray and ankle eversion significantly, without any instability in the ankle. Peroneus longus provides 5.5% strength for moderate dorsiflexion for ankle eversion movements, peroneus longus is the main muscle. But in other studies it is said that the use of peroneus longus graft does not interfere with the stability of the ankle and ROM. Does not even affect the functional outcome of the ankle However, in a study conducted by Bancha et al and Kerimoglu et al., The technique used for taking Peroneus Longus graft tendons did not include suturing in the distal stump of Peroneous Longus. So with this study, researchers wanted to find out whether different results would be found related to donor site complications if the technique used included suturing the distal stump of the Peroneus Longus tendon against the peroneus brevis tendon
n/a
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02524652 -
Local Infiltration Analgesia vs Adductor Canal Block for Analgesia After Anterior Cruciate Ligament Reconstruction
|
Phase 4 | |
Recruiting |
NCT02511158 -
French Prospective Anterior Cruciate Ligament Reconstruction Cohort Study (FAST)
|
||
Recruiting |
NCT02074917 -
Comparison of Dynamic Knee Stability and Functional Outcomes in Anatomical ACL Reconstruction at AM or Central Position
|
N/A | |
Completed |
NCT02584452 -
Trial Evaluating Postop Pain and Muscle Strength Among Regional Anesthesia Techniques for Ambulatory ACL Reconstruction
|
N/A | |
Completed |
NCT01300182 -
The Effect of Early WBVT on Neuromuscular Control After ACLR
|
N/A | |
Recruiting |
NCT00971451 -
Quadriceps Function Prior to Anterior Cruciate Ligament Reconstruction
|
N/A | |
Completed |
NCT02420353 -
Evaluation of rGH Therapy to Prevent Muscle Atrophy in Patients With ACL Tears
|
Phase 2 | |
Completed |
NCT02173483 -
Anterior Cruciate Ligament-reconstruction: Quadriceps Tendon or Hamstrings Tendon? A Prospective Trial
|
N/A | |
Completed |
NCT02754674 -
Comparison of Femoral Tunnel and Clinical Outcome Using Two Anterior Cruciate Ligament Reconstruction Techniques
|
N/A | |
Completed |
NCT01440348 -
Simultaneous Multiple Cruciate Ligament Reconstructions Using a Single Achilles Allograft
|
Phase 4 | |
Completed |
NCT01391650 -
Stability of the Knee Joint After Single and Double Bundle Anterior Cruciate Ligament Reconstruction
|
N/A | |
Not yet recruiting |
NCT02833454 -
Study of the Anatomical Direct Insertion Anterior Cruciate Ligament Reconstruction
|
N/A | |
Not yet recruiting |
NCT02834962 -
Study of Single And Double Bundle Anterior Cruciate Ligament (ACL) Graft Cross-sectional Dimensions
|
N/A | |
Completed |
NCT02300012 -
A Pilot Study to Investigate Biomarkers in Anterior Cruciate Ligament (ACL) Patients and Healthy Controls
|
N/A | |
Completed |
NCT02939677 -
Can Targeted Exercise Improve Knee Strength Following ACLR (RATE)
|
N/A | |
Completed |
NCT02817399 -
The Effect of Functional Electrical Stimulation
|
N/A | |
Recruiting |
NCT02771548 -
Biomechanical Analysis of Dynamic Tasks and Muscular Strength Following Anterior Cruciate Ligament Reconstruction
|
||
Completed |
NCT01361789 -
COX-2 Inhibitor Versus Glucocorticoid Versus Both Combined
|
Phase 4 | |
Completed |
NCT00463099 -
Multicenter Orthopaedics Outcomes Network for ACL Reconstructions
|
||
Active, not recruiting |
NCT02680821 -
Reconstruction of the Anterolateral Ligament (ALL) With Revision Anterior Cruciate Ligament (ACL) Surgery
|
N/A |