Clinical Trials Logo

Clinical Trial Summary

Understanding and modulating fluid parameters is an important, but often overlooked aspect of phacoemulsification. In a previous study we compared the impact of using high fluid parameters versus low fluidic parameters on real-time IOP measured during phacoemulsification. The investigators found that using high parameters resulted in a higher absolute rise in IOP as well as higher fluctuations in the IOP when compared to low parameters. Clinically these higher fluctuations in IOP would translate in a higher chamber instability. Based on the results of this study, the investigators decided to take it further and study the impact of using high parameters (and thus, higher chamber instability) on macular edema and thickness following surgery, in an otherwise uncomplicated surgery.

Higher fluid parameters during phacoemulsification predisposes the eye to increased macular thickness


Clinical Trial Description

Several studies have shown the adverse impact of an increase in the IOP and IOP fluctuations that occur during anterior segment intervention on the posterior segment structures. In human volunteers with each incremental increase in IOP the systolic and diastolic flow velocities in the short posterior ciliary arteries decreased linearly. This implies that the normal healthy eye is not able to autoregulate to maintain posterior ciliary artery blood flow velocities in response to acute large elevations in IOP. Vascular insufficiency due to abnormal autoregulation has been proposed as a major factor in the development of glaucoma. 1

It has been postulated that IOP elevation during the LASIK procedure causes mechanical stress which may induce tangential stress on the posterior segment.2, 3 Some studies have reported that the increase in IOP damages the retinal ganglion cells causing visual field defects. Also sudden increases in IOP, although well tolerated may induce changes in the peripheral retina.4,5,6

Several reports propose the occurrence of macular hole, lacquer cracks and choroidal neovascular membranes following the LASIK procedure. 3 It has been observed that the rapidly fluctuating pressure variations may be detrimental, particularly in susceptible persons with compromised ocular blood flow. Rapid IOP changes across a 30-mm Hg range would be predicted to influence posterior segment blood vessels.

In a previous study we compared the impact of using high fluid parameters versus low fluidic parameters on real-time IOP measured during phacoemulsification. We found that using high parameters resulted in a higher absolute rise in IOP as well as higher fluctuations in the IOP when compared to low parameters. Clinically these higher fluctuations in IOP would translate in a higher chamber instability.

We hypothesize that although transient, the increased IOP that occurs during phacoemulsification when using high parameters could cause mechanical stress on the eye. These higher fluid parameters during phacoemulsification can predispose the eye to increased macular thickness.

To the best of our knowledge there are no published data on impact of IOP changes and fluctuation that are induced during cataract surgery on the macula. To investigate this further, we decided to study the impact of using high parameters (and thus, higher chamber instability) on macular thickness following surgery, in an otherwise uncomplicated surgery. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Prevention


Related Conditions & MeSH terms


NCT number NCT01385852
Study type Interventional
Source Iladevi Cataract and IOL Research Center
Contact
Status Completed
Phase Phase 4
Start date May 2010
Completion date August 2011

See also
  Status Clinical Trial Phase
Completed NCT01546402 - Intraoperative Dexamethasone Implant Improves Outcome of Cataract Surgery With Diabetic Macular Edema Phase 4
Completed NCT04940338 - PCME Prevention in Patients With NPDR Phase 4
Completed NCT05811182 - Vitreous Hyper Reflective Dots in Association With Pseudophakic Cystoid Macular Edema