Anterior Cruciate Ligament Injuries Clinical Trial
Official title:
Steps Towards Osteoarthritis Prevention: A Pilot Study
Optimal knee joint loading, which refers to the forces acting on the knee caused by daily activities such as daily steps, plays an essential role in maintaining knee articular cartilage health and reducing the risk of osteoarthritis (OA). After anterior cruciate ligament reconstruction (ACLR), individuals take fewer daily steps as compared to uninjured controls resulting in insufficient knee joint loading to joint tissues, but it is unclear how changes in daily steps impact knee joint cartilage health in OA development. Therefore, the overall single arm, longitudinal pre-test post-test study objective is to determine the mechanistic links between knee joint loading as measured by daily steps and comprehensive magnetic resonance imaging (MRI) measures of knee joint cartilage health post-ACLR. The central hypothesis is that individuals post-ACLR who take low daily steps will demonstrate deconditioned, less resilient cartilage characterized by poor tibiofemoral cartilage composition and greater cartilage strain.
Osteoarthritis (OA) is a leading cause of disability. Identifying modifiable mechanisms of poor knee joint health development for disease prevention strategies are critical to improving long-term health. Aberrant mechanical loading has been theorized as a primary risk factor for knee OA. Most studies primarily focus on mechanical mechanisms of excessive joint loading in OA development. However, recent evidence suggests that joint underloading may also play a role. The effects of low loading frequency assessed via daily steps in real world settings on knee joint health is an understudied parameter of aberrant mechanical loading in individuals at risk for OA. Individuals with anterior cruciate ligament (ACL) injury who undergo ACL reconstruction (ACLR) surgery are a representative population to assess the effects of low loading frequency on knee joint health because they are at elevated risk for posttraumatic OA development and demonstrate low daily steps compared to uninjured individuals. Therefore, the overall study objective is to determine the mechanistic links between joint loading frequency and comprehensive magnetic resonance imaging (MRI) measures of knee joint cartilage health in individuals post-ACLR. The central hypothesis is that individuals post-ACLR who take low daily steps will demonstrate deconditioned, less resilient cartilage characterized by poor tibiofemoral cartilage composition and greater cartilage strain which represent equally important, but independent measures of cartilage health. Furthermore, increasing daily steps using a 16-week daily step promotion paradigm in individuals post-ACLR who underload (<7000 daily steps which is predictive of physical inactivity) will recondition cartilage by improving tibiofemoral cartilage composition and strain. The proposed study aims to determine: 1) associations between daily steps with tibiofemoral cartilage composition and strain in ACLR individuals (n=56) using an observational cross-sectional study design, and 2) the effects of increasing daily steps over 16-weeks on tibiofemoral cartilage composition and strain in ACLR individuals with low daily steps (n=28) using a single arm, longitudinal pre-test post-test study design. The proposed study is innovative because it builds on observational studies linking underloading with poor knee joint health and will be the first study to mechanistically determine how altering loading frequency (i.e., increasing daily steps) affects comprehensive in vivo measures of cartilage health in individuals at risk for OA. Successful completion of the proposed study will provide foundational evidence for the development of a future randomized controlled trial to determine the efficacy of an adaptive daily step promotion. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04062578 -
Effects Provided by a Physiotherapy Treatment Preventing Lower Extremity Injuries in Female Football Players
|
N/A | |
Recruiting |
NCT05461326 -
Quadriceps Tendon Versus Bone Patellar Tendon Bone Autograft ACL Reconstruction RCT
|
N/A | |
Completed |
NCT05109871 -
Reliability and Validity of Inline Dynamometry Study for Measuring Knee Extensor Torque
|
N/A | |
Completed |
NCT05504018 -
Clinical and Radiological Evaluation of ACL Reconstruction Results
|
N/A | |
Recruiting |
NCT06185231 -
Investigation of the Effects of Vibration Therapy on Pain, Functionality, and Proprioception After ACL Injury
|
N/A | |
Recruiting |
NCT03968913 -
Biologic Therapy to Prevent Osteoarthritis After ACL Injury
|
Early Phase 1 | |
Completed |
NCT04408690 -
Feasibility of a RCT That Compares Immediate Versus Optional Delayed Surgical Repair After ACL Injury
|
Phase 3 | |
Recruiting |
NCT06222814 -
Evaluation of the Results of Two Different Methods in Management of Antero-lateral Instability of the Knee
|
N/A | |
Recruiting |
NCT05614297 -
Agreement Between Rolimeter and Lachmeter in Patients With ACL Injury
|
||
Active, not recruiting |
NCT05184023 -
The Effect of PEMF for Patients With Quadriceps Muscle Weakness After ACLR
|
N/A | |
Completed |
NCT04906538 -
Objective Results of Anterior Cruciate Ligament Reconstruction With and Without Internal Suture Augmentation Technique
|
Phase 2/Phase 3 | |
Completed |
NCT05014009 -
The Influence of Neuromuscular Training on Whole-body Movement Strategies and Knee Mechanics During Change-of-direction Tasks in Sports Science Students
|
N/A | |
Not yet recruiting |
NCT06083818 -
Anterior Cruciate Ligament Injury Prevention Protocol in Female Football Players With Dynamic Knee Valgus
|
N/A | |
Recruiting |
NCT05584020 -
Arthroscopic Anterior Cruciate Ligament Repair Versus Reconstruction for Acute Anterior Cruciate Ligament Injury
|
N/A | |
Completed |
NCT04580290 -
Jewel ACL Post Market Clinical Follow Up Study
|
||
Recruiting |
NCT04888052 -
Prolonged Preoperative Rehabilitation in ACL Rupture.
|
N/A | |
Recruiting |
NCT06430775 -
Exploring Prolonged AMR in ACL Reconstructed Patients
|
||
Not yet recruiting |
NCT05580133 -
All-Inside Single-Bundle for Anterior Cruciate Ligament Reconstruction With Full Thickness of the Peroneus Longus Tendon Compared to the Six-strand-hamstring Autograft (ACL)
|
||
Recruiting |
NCT04162613 -
Can Sensorimotor Function Predict Graft Rupture After ACL Reconstruction
|
||
Not yet recruiting |
NCT05619393 -
Comparison of Kinematic Movements Between ACL Deficiency With ACL Reconstruction and Healthy People
|
N/A |