Mechanical Ventilation Complication Clinical Trial
Official title:
Telehealth-Delivered Preoperative Inspiratory Muscle Training: An Innovative Solution to Conserve Scarce ICU Resources
In light of the corona virus pandemic (COVID-19), there is critical need to conserve scarce mechanical ventilation (MV) resources. This study evaluates an intervention in non-infected cardiac patients as a means to assist with minimizing MV and ICU length of stay (LOS). Pre-op inspiratory muscle training (IMT) has been shown to decrease pulmonary complications, MV dependence, and ICU LOS following thoracic surgery. The investigators aim to determine the mechanism of remodeling in diaphragms of adults who undergo pre-op IMT.
Highly active muscles such as the diaphragm are particularly sensitive to both disuse and training. For example, diaphragm fibers of controlled mechanically ventilated young adults atrophy by more than 50% within 36 hours of complete inactivity, and mechanical ventilation (MV) initiates signaling pathways within the first several hours of inactivity that promote progressive diaphragmatic fiber dysfunction. The investigators have shown that widespread atrophy signaling begins in the operating room during cardiac surgery, after only a few hours of MV. In addition to this fiber atrophy, MV leads to significant declines in the strength of the diaphragm, which can lengthen the time it takes to wean from MV. The clinical occurrence of early onset, progressive contractile dysfunction is defined as ventilator-induced diaphragmatic dysfunction (VIDD). VIDD is regarded as a primary contributor to difficulties with weaning from MV. Conversely, the investigators have shown that IMT increases the pressure-generating capacity of the diaphragm and inspiratory synergist muscles, and facilitates weaning in patients with VIDD. Preoperative IMT for as little as 1-2 weeks reportedly increases inspiratory muscle strength. IMT prior to cardiothoracic surgery has been shown to reduce post-operative pulmonary complications such as atelectasis, pneumonia, or delayed ventilator weaning. Additionally, strength gains associated with preoperative IMT are associated with shorter ICU and hospital lengths of stay, which may potentially offer a cost benefit. Unfortunately, very little is understood about the neuromuscular adaptations and signaling mechanisms that contribute to these IMT clinical advantages. A particularly novel aspect of this project is it will be the first study of the mechanisms that contribute to diaphragm strengthening. A greater understanding of these mechanisms may help future investigators to develop more efficient exercise prescriptions to offset MV use in cases such as surgery, and it may help identify molecules and exercise that could protect the diaphragms of individuals who cannot exercise in advance, as in the case of acute infections that compromise breathing. The overall objective of this study is to investigate diaphragm neuromuscular remodeling associated with pre-operative, telehealth delivered IMT, compared with relaxation breathing training (RLX). Guided RLX exercises have been shown to improve post-operative pain perception and modestly lower systolic blood pressure in hypertensives but are not thought to significantly alter diaphragm strength. Forty adult volunteers will receive either IMT (n=20) or RLX training (n=20) for 2-4 weeks prior to elective cardiothoracic surgery and undergo breathing performance tests before and after the training period. A full thickness biopsy (approximately 6mm x 20 mm) from the right ventral costal diaphragm will be acquired as soon as the diaphragm is exposed during surgery. Additionally, a biopsy from the pectoralis major will be obtained and used as a non-exercised control muscle. Histological and RNA sequencing analyses will be performed to examine the mechanisms that contribute to neuromuscular adaptations to training. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05030337 -
Optimising Ventilation in Preterms With Closed-loop Oxygen Control
|
N/A | |
Completed |
NCT05144607 -
Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies
|
N/A | |
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT05084976 -
Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
|
||
Active, not recruiting |
NCT05886387 -
a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
|
||
Completed |
NCT04429399 -
Lowering PEEP: Weaning From High PEEP Setting
|
N/A | |
Completed |
NCT02249039 -
Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study
|
Phase 1 | |
Recruiting |
NCT02071524 -
Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Completed |
NCT00893763 -
Strategies To Prevent Pneumonia 2 (SToPP2)
|
Phase 2 | |
Terminated |
NCT05056103 -
Automated Secretion Removal in ICU Patients
|
N/A | |
Active, not recruiting |
NCT04558476 -
Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation
|
Phase 2 | |
Recruiting |
NCT05295186 -
PAV Trial During SBT Trial
|
||
Active, not recruiting |
NCT05370248 -
The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient
|
N/A | |
Completed |
NCT04818164 -
Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04589910 -
Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound.
|
N/A | |
Completed |
NCT04193254 -
LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
|
||
Completed |
NCT06332768 -
NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients
|
N/A | |
Not yet recruiting |
NCT03259854 -
Non Invasive Mechanical Ventilation VERSUS Oxygen MASK
|
N/A | |
Not yet recruiting |
NCT03245684 -
Assisted or Controlled Ventilation in Ards (Ascovent)
|
N/A |