Clinical Trials Logo

Clinical Trial Summary

De novo acute hypoxemic respiratory failure (AHRF) is associated with high overall mortality, which increases significantly with the use of orotracheal intubation. High flow nasal canula (HFNC) has turned to be the first line non-invasive oxygenation strategy aiming to avoid intubation. One of the main factors worsening lung injury and increasing mortality in invasively ventilated patients is a too high tidal volume (TV) delivered by the ventilator. Consistent data suggest that such an aggravation of respiratory lesions may occur during spontaneous ventilation if TV is too large. This phenomenon is called Patient self-inflicted lung injury (P-SILI). The effect of TV on the outcome of patients with de novo AHRF under HFNC has never been evaluated since TV is not easily accessible in patients under HFNC. Investigators hypothesized that a large TV during HFNC has an impact on the outcome. TV will be measured using chest Electrical Impedance Tomography (EIT). To calibrate the EIT data, i.e. to be able to convert changes in thoracic impedance into TV, thoracic impedance signal, flow and volume will be collected during a 4 cmH2O continuous positive airway pressure (CPAP) test, using a pneumotachograph inserted on the ventilator circuit between the mask and the Y-piece. Such a level of CPAP is supposed to reproduce the majority of the physiological effects of HFNC. Thus, EIT signal can be used to calculate TV during HFNC since it remains reliable even when the positive expiratory pressure changes.

A secondary objective is to quantify a respiratory distress index. This quantification will be recorded by respiratory inductance plethysmography (RIP), obtained using two elastic bands equipped with a sensor sensitive to their stretching, one positioned at the level of the thorax, the other at the level of the abdomen. The stretching changes of the two bands during the respiratory cycle allow evaluating their possible asynchronism by calculating the phase angle Investigators want to be able to evaluate up to 6 predictors of HFNC failure in this research with an effect size of 0.15, α risk of 0.05, and a power of 0.8. A number of 55 participants is required. Investigators plan to include 60 patients due to potential withdrawal of consent and/or unusable data.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03919331
Study type Interventional
Source Assistance Publique - Hôpitaux de Paris
Contact Guillaume CARTEAUX, Doctor
Phone +331 49 81 43 85
Email Guillaume.carteaux@aphp.fr
Status Not yet recruiting
Phase N/A
Start date June 1, 2019
Completion date September 1, 2021

See also
  Status Clinical Trial Phase
Not yet recruiting NCT06007495 - Pilot Physiological Evaluation of an Investigational Mask With Expiratory Washout. N/A
Completed NCT05060926 - Intubation Prediction in COVID-19 Patients Treated With Awake Prone Positioning
Recruiting NCT05203536 - Respiratory Mechanics Assessment During Assisted Mechanical Ventilation
Completed NCT04570384 - Intravenous L-Citrulline Influence on the Need for Invasive Mechanical Ventilation for Acute Hypoxemic Respiratory Failure in Patients With COVID-19 Phase 2
Not yet recruiting NCT05499039 - High Flow Nasal Cannula Versus Non-Invasive (NIV)in Both Hypoxemic and Hypercapnic Respiratory Failure. N/A
Completed NCT04568642 - Comparing Closed-loop FiO2 Controller With Conventional Control of FiO2 N/A
Completed NCT03653806 - Automated Analysis of EIT Data for PEEP Setting
Completed NCT01747109 - Benefits of Optiflow® Device for Preoxygenation Before Intubation in Acute Hypoxemic Respiratory Failure : The PREOXYFLOW Study N/A
Terminated NCT04632043 - Early Versus Delayed Intubation of Patients With COVID-19 N/A
Completed NCT04581811 - Prolonged Prone Positioning for COVID-19-induced Acute Respiratory Distress Syndrome (ARDS) N/A
Not yet recruiting NCT06064409 - Optimal Timing and Failure Prediction of High Flow Nasal Cannula Oxygen Therapy in Emergency Department: Prospective Observational Single Center Study
Completed NCT03133520 - Effectiveness of High Flow Oxygen Therapy in Patients With Hematologic Malignancy Acute Hypoxemic Respiratory Failure N/A
Not yet recruiting NCT06438198 - Early Switch From Controlled to Assisted Ventilation N/A
Recruiting NCT04997265 - Strategies for Anticoagulation During Venovenous ECMO N/A
Completed NCT05083130 - Awake Prone Positioning in Moderate to Severe COVID-19 N/A
Active, not recruiting NCT06374589 - Closed-Loop O2 Use During High Flow Oxygen Treatment Of Critical Care Adult Patients (CLOUDHFOT) N/A
Active, not recruiting NCT06333002 - Machine Learning Model to Predict Outcome and Duration of Mechanical Ventilation in Acute Hypoxemic Respiratory Failure
Recruiting NCT05078034 - HNFO With or Without Helmet NIV for Oxygenation Support in Acute Respiratory Failure Pilot RCT N/A
Recruiting NCT03513809 - Inflammation and Distribution of Pulmonary Ventilation Before and After Tracheal Intubation in ARDS Patients
Terminated NCT04395807 - Helmet CPAP Versus HFNC in COVID-19 N/A