Clinical Trials Logo

Clinical Trial Summary

The hematopoetic cytokine erythropoietin (EPO) has been shown to reduce programmed cell death and tissue destruction in experimental models of acute kidney ischemia-reperfusion injury. Thus, treatment with high dose recombinant human EPO (rHuEPO) may prevent kidney tissue damage and loss of renal function after successful kidney transplantation in humans.


Clinical Trial Description

Erythropoietin (EPO) has pleiotropic effects well beyond the maintenance of red blood cell mass. In the embryo, EPO is a major regulator of vascular formation and organ growth, and EPO receptors are found in almost every embryonic tissue. EPO receptors also exist in many adult tissues including renal tissue, and even the notion of autocrine or paracrine EPO systems has been raised. Although the peritubular fibroblasts are the major adult site for EPO production, EPO receptors have been demonstrated in many kidney cell types, e.g. proximal tubule epithelial cells, mesangial cells, and the glomerulus. Moreover, EPO has important cytoprotective effects on various cell lines and organs, and protection from ischemic injury and inhibition of apoptotic death-related pathways has been reported in brain, heart and renal tissue. The intracellular pathways involved in these favourable EPO effects may involve nuclear translocation of the transcription factor NF- B, JAK2 phosphorylation and phosphorylation of Akt (protein kinase B).

A recent experimental study revealed that cobalt administration to rats caused up-regulation of EPO, and diminished the degree of renal injury caused by ischemia-reperfusion (I/R), suggesting that EPO may also play an important role in renal ischemic preconditioning. Indeed, subsequent studies from different laboratories demonstrated that preconditioning with recombinant human EPO (rHuEPO) is protective against I/R injury in rodents. In this respect data on specific protective effects of rHuEPO and its analogues on endothelial cells of glomeruli are of particular interest. Furthermore, administration of rHuEPO may not have only protective effects on the vascular level, but also potential of regeneration, since EPO also stimulates proliferation and differentiation of regenerative cells such as endothelial progenitor cells (EPCs).

Renal ischemia, whether caused by shock or after surgery, is a major cause of acute renal failure (ARF) in man. In this respect kidney transplantation is a classical model of ARF due to I/R injury, since the transplanted organ is connected to the recipients blood supply usually after several hours of "cold ischemia". Although reperfusion is essential for the survival of ischemic tissue, it also initiates a complex and interrelated sequence of events that results in injury and the eventual death of renal cells as a result of a combination of both apoptosis and necrosis. Apoptotic cell death has been documented in human biopsies after renal I/R, and inhibition of apoptotic signalling and cell death ameliorates the associated injury and inflammation in an experimental model of ischemic ARF. Similarly, I/R damage of transplanted kidney is thought to be a major factor limiting renal function after successful transplantation. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Prevention


Related Conditions & MeSH terms


NCT number NCT00425698
Study type Interventional
Source Hannover Medical School
Contact
Status Completed
Phase Phase 2/Phase 3
Start date February 2007
Completion date November 2009

See also
  Status Clinical Trial Phase
Recruiting NCT04910867 - APOL1 Genetic Testing Program for Living Donors N/A
Completed NCT02723591 - To Compare the Effects of Immediate-release Tacrolimus and Astagraf XL on Donor-Specific Antibody (DSA) Formation and the Development of Immune Activation (IA) in de Novo Kidney Transplant Recipients Phase 4
Completed NCT05945511 - Silent Gallbladder Stone in Kidney Transplantation Recipients: Should it be Treated?
Completed NCT02234349 - Bile Acids and Incretins in Pancreas Kidney Transplant Patients N/A
Completed NCT04496401 - PK Study in Diabetic Transplant récipients : From Twice-daily Tacrolimus to Once-daily Extended-release Tacrolimus Phase 4
Recruiting NCT05917795 - Endoscopic Sleeve Gastroplasty With Endomina® for the Treatment of Obesity in Kidney Transplant Candidates N/A
Not yet recruiting NCT05934383 - Safety and Efficacy of Ultrasound Renal Denervation in Kidney Transplantation Patients With Uncontrolled Hypertension N/A
Withdrawn NCT04936971 - Introduction of mTor Inhibitors and the Activation of the Cytomegalovirus (CMV) -Specific Cellular Immune Response Phase 4
Not yet recruiting NCT04540640 - Oxygenated Machine Preservation in Kidney Transplantation N/A
Not yet recruiting NCT03090828 - Economic Evaluation of an Education Platform for Patients With End-stage Renal Disease N/A
Recruiting NCT02908139 - Noninvasive Perioperative Monitoring of Arterial Stiffness, Volume and Nutritional Status in Stable Renal Transplant Recipients N/A
Terminated NCT02417870 - Ultra-low Dose Subcutaneous IL-2 in Renal Transplantation Phase 1/Phase 2
Completed NCT02560558 - Bela 8 Week Dosing Phase 4
Recruiting NCT02154815 - Pre-emptive Kidney Transplantation Quality of Life N/A
Completed NCT02235571 - iChoose Decision Kidney Aid for End-Stage Renal Disease Patients N/A
Enrolling by invitation NCT01905514 - ImPRoving Adherence to Immunosuppressive Therapy by Mobile Internet Application in Solid Organ Transplant Patients N/A
Completed NCT02147210 - Chronic Transplant Glomerulopathy and Regulation of Expression of Ephrin B1 N/A
Recruiting NCT01699360 - The Biomarker for Immunosuppressive Agents Metabolism in Chinese Renal Transplant Recipients Phase 4
Completed NCT01672957 - ORANGE Study: An Observational Study on Renal Function in Kidney Transplant Patients on Immunosuppressive Therapy Containing CellCept (Mycophenolate Mofetil) N/A
Terminated NCT01436305 - Optimization of NULOJIX® Usage As A Means of Avoiding CNI and Steroids in Renal Transplantation Phase 2