Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT01961648
Other study ID # B2012:132
Secondary ID
Status Terminated
Phase N/A
First received September 6, 2013
Last updated June 26, 2015
Start date August 2013
Est. completion date June 2015

Study information

Verified date September 2013
Source University of Manitoba
Contact n/a
Is FDA regulated No
Health authority Canada: Health Canada
Study type Interventional

Clinical Trial Summary

This study is being conducted to determine whether inhaling exhaled carbon dioxide is effective for the treatment of sleep apnea. A mild increase in this gas can stimulate the respiratory drive by 2-3 fold, which in turn can stimulate the upper airway dilator muscles and decrease the severity of obstructive sleep apnea by at least 50% in selected patients.


Description:

During wakefulness pharyngeal dilator muscles (dilators) provide the necessary force to permit an adequate flow in all subjects regardless of how collapsible their passive pharynx is. This dilator activity is substantially lost at sleep onset. Subjects in whom the passive pharynx cannot permit adequate ventilation must recruit dilators through reflex mechanisms if they are to remain asleep. Dilators can be recruited reflexly via changes in blood gas tensions and in afferent activity of pharyngeal mechanoreceptors.

Patients with obstructive sleep apnea (OSA) develop repetitive obstructive events during which air flow decreases substantially (hypopneas) or ceases altogether (apneas). These last from 10 to >60 seconds following which there is a substantial increase in ventilation (hyperventilatory phase) that lasts for several breaths. The cycle then repeats. Arousal from sleep occurs at some point during the hyperventilatory phase in the vast majority of obstructive respiratory events. However it has been shown that in the majority of OSA patients, the reflex mechanisms are competent and can deal with the obstruction without arousal. The respiratory drive must increase a finite amount before the upper airway muscles begin responding to increasing respiratory drive, and often the patient wakes up first. Thus, when a subject with a narrowed or more compliant pharynx falls asleep and obstructs his/her airway, blood gas tensions must deteriorate a threshold amount before the pharyngeal dilators begin responding. Once this threshold is reached, the dilators respond briskly to further changes in blood gas tensions and open the airway. This threshold was termed the Effective Recruitment Threshold (TER).

The basis for this research project is that if respiratory drive can be maintained at or near the threshold, the dilators would respond promptly to any obstruction and there would be little further increase in respiratory drive during obstruction.We estimate that the required increase in drive can be attained by simply raising carbon dioxide pressure (PCO2) 2-3 mmHg, a highly tolerable increase. We intend to increase respiratory drive on a continuous basis, beginning before sleep by asking the participants to breath through a regular continuous positive airway pressure (CPAP) mask with added dead space.

To increase dead-space we will modify commercial rebreathing bags used for oxygen therapy so that the amount of rebreathing can be adjustable. This should raise arterial carbon dioxide pressure (PaCO2) a few millimetres of mercury (mmHg) in the steady state. Upon sleep, the respiratory drive would be at or above TER in nearly half the patients. Should the airway obstruct, the dilator muscles would be in a position to respond promptly, preventing an acute further rise in respiratory drive. This will reduce the frequency of obstructive respiratory events by >50% in at least half the patients, and improve sleep quality and nocturnal oxygen saturation.


Recruitment information / eligibility

Status Terminated
Enrollment 13
Est. completion date June 2015
Est. primary completion date June 2014
Accepts healthy volunteers No
Gender Both
Age group 21 Years to 70 Years
Eligibility Inclusion Criteria:

- Moderate to severe OSA Apnea Hypopnea Index > 20/hr.

- Minimum oxygen saturation by pulse oximetry (SpO2) during events >70% throughout sleep during the clinical sleep study

Exclusion Criteria:

- Neuromuscular disease.

- Obesity-hypoventilation syndrome.

- Chronic obstructive pulmonary disease.

- Pregnancy.

- Significant comorbidities:

1. Dialysis-dependant renal failure

2. Severe asthma

3. Congestive

4. Heart failure

5. Previous stroke

- Recent (within 3 months) myocardial infarction or Active coronary ischemia event.

Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Crossover Assignment, Masking: Single Blind (Subject), Primary Purpose: Treatment


Related Conditions & MeSH terms


Intervention

Device:
Rebreathing bag

Sham rebreathing

Mask


Locations

Country Name City State
Canada Misericordia Medical Centre, Sleep Disorder Centre Winnipeg Manitoba
Canada Sleep Disorder Centre at Misericordia Health Centre Winnipeg Manitoba

Sponsors (1)

Lead Sponsor Collaborator
University of Manitoba

Country where clinical trial is conducted

Canada, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change from baseline in total Apnea-hypopnea index (AHI) We expect that at least half the patients will undergo >50% reduction in their AHI relative to the control part of the study. The baseline apnea-hypopnea index will be established during the sham intervention, and will be compared to the AHI at the end of the CO2 rebreathing intervention. Eight to ten hours. Within the same study night, the AHI will be compared at baseline and at the end of the intervention period No
Secondary Sleep quality as assessed by Total Sleep Time. Sleep Efficiency, and Arousal Index The sleep architecture assessed by the sleep efficiency, number of arousals and awakenings, and the time awake after sleep onset (WASO) will be determined at baseline (sham) and compared after CO2 rebreathing intervention. If the apnea/hypopnea index is improved, the sleep quality is expected to improve accordingly, however, the intervention itself has the potential to disrupt sleep even when only minor changes in CO2 are expected. Eight to ten hours. Within the same study night, the sleep quality conventional measurements will be compared at baseline and at the end of the intervention period No
See also
  Status Clinical Trial Phase
Recruiting NCT05857384 - Bioavailability, Bioequivalence and Tolerability of IHL-42X Compared to the Reference Drugs Phase 1
Recruiting NCT04547543 - Follow-up of Apneic Patients by Visio-consultation N/A
Recruiting NCT05371509 - Novel Myofunctional Water Bottle to Reduce OSA and Snoring Study N/A
Completed NCT02515357 - Mediterranean Diet/Lifestyle Intervention in Obstructive Sleep Apnea N/A
Completed NCT05582070 - Effect on Sleep of Surgical Treatment of Severe Nasal Obstruction N/A
Active, not recruiting NCT03189173 - Combined Upper-airway and Breathing Control Therapies for Obstructive Sleep Apnea Phase 2
Completed NCT04084899 - The Effect of CPAP on Lung Hyperinflation in Patients With OSA
Completed NCT03032029 - Registry on the Treatment of Central and Complex Sleep-Disordered Breathing With Adaptive Servo-Ventilation
Recruiting NCT04028011 - Clinical Evaluation of a Wearable Technology for the Diagnosis of Sleep Apnoea
Recruiting NCT06047353 - Community Health Advocates for Motivating PAP Use in Our Neighborhoods. N/A
Completed NCT05253963 - Acute Effect of CPAP on Weight in Patients With Obstructive Sleep Apnea N/A
Recruiting NCT06029959 - Stroke and CPAP Outcome Study 3 N/A
Recruiting NCT06150352 - Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
Completed NCT03589417 - Postural Stability, Balance and Fall Risk in Patients With Obstructive Sleep Apnea
Recruiting NCT04335994 - ENhancing Outcomes in Cognitive Impairment Through Use of Home Sleep ApNea Testing N/A
Withdrawn NCT04063436 - Evaluation of a New Nasal Pillows Mask for the Treatment of Obstructive Sleep Apnea N/A
Recruiting NCT05385302 - Sociological Determinants of Positive Airway Pressure Adherence in OSA Patients
Recruiting NCT04572269 - Metabolomics of Obstructive Sleep Apnea
Not yet recruiting NCT06467682 - 12-week Tele-exercise Program in Patients With OSA N/A
Withdrawn NCT04011358 - Retinal Vein Occlusion and Obstructive Sleep Apnea: A Case Control Study N/A