Clinical Trials Logo

Clinical Trial Summary

This study tests whether a high-fiber diet based on legumes, such as dry beans, can lead to sustained reductions in obesity and colon cancer risk in persons at highest risk, namely overweight or obese, post-polypectomy patients.


Clinical Trial Description

An important knowledge gap concerns the role of fiber in sustaining reduced energy intake to simultaneously manage weight and influence human colorectal cancer risk. Epidemiologic studies have shown an association between a high fiber diet featuring legumes (HLD) and reduced obesity and lower risk for adenoma recurrence or colorectal cancer. There are many plausible mechanisms to explain why high-fiber diets, and especially a HLD, may reduce colorectal cancer risk. First, fiber is fermented by the colonic microbiota to produce short chain fatty acids (SCFA). The SCFA, butyrate, has a remarkable array of colonic mucosal health promoting, anti-inflammatory, and anti-neoplastic properties. Secondly, microbiota break down plant cell walls releasing phytochemicals, which also have powerful anti-inflammatory and anti-carcinogenic effects. Thirdly, colonic transit is accelerated, reducing contact time with luminal carcinogens, such as heterocyclic amines formed from cooked red meat, and secondary bile acids, induced by a high fat diet and synthesized by the colonic microbiota. Dr. Stephen O'Keefe's lab performed a human randomized controlled crossover feeding study (participants receive both diets) comparing high and low- fiber diets. The study measured mucosal biomarkers of cancer risk (proliferation - % epithelial cells staining positive for Ki67, inflammation - cluster of differentiation 3 (CD3)+ intraepithelial lymphocytes, cluster of differentiation 68 (CD68)+ lamina propria macrophages) made by fecal sampling and colonoscopy. Results suggested that within weeks these markers responded favorably to the high-fiber diet with proliferative rates and inflammatory biomarkers decreasing and microbiota composition adapting to increase butyrogenesis. The researchers of this study have previously found that fiber may also reduce cancer risk indirectly by promoting weight loss, improving insulin sensitivity and decreasing inflammation. On average, individuals consume a similar weight of food daily; thus, replacing energy dense foods (higher kcal/g, e.g., high fat) with lower energy density foods (lower kcal/g), like legumes, should potentiate weight control. Viscous fiber intake is associated with longer gastric emptying times which over time might contribute to postponing the next eating occasion. Diet may also induce changes in gut microbiome composition leading to negative energy balance. Emerging human evidence links the gut microbiome with insulin resistance, inflammation, and obesity and with adenomatous polyps and colon cancer. In this current study, characterizing gut motility, microbiome, and metabolome composition profiles that may influence weight loss and have a role in the prevention or recurrence of adenomas and colorectal cancer, will provide novel and potentially therapeutic information. The goal of the research is to conduct a clinical trial featuring study-provided pre-portioned entrées and strategic nutritional instruction to guide participants to integrate legumes into a healthy high-fiber diet pattern. Participants will be provided two entrées per day during months 1 through 3, and one entrée per day during months 4 through 6. Participants will continue their diets during months 7 through 12 but will be responsible for food preparation. The research will target a population at high risk for colorectal cancer, overweight and obese participants with a history of a colon polyp in the past 3 years, to test whether a high-legume, high-fiber diet will simultaneously increase weight loss and suppress intestinal biomarkers of cancer risk compared to a control diet (healthy American). In addition, it will explore potential mechanisms through which the high-legume intervention diet facilitates weight loss and intestinal health. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04780477
Study type Interventional
Source Emory University
Contact Terry Hartman, PhD, MPH, RD
Phone 404-727-9134
Email tjhartm@emory.edu
Status Recruiting
Phase N/A
Start date June 29, 2021
Completion date December 31, 2025

See also
  Status Clinical Trial Phase
Recruiting NCT04101669 - EndoBarrier System Pivotal Trial(Rev E v2) N/A
Recruiting NCT04243317 - Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults N/A
Terminated NCT03772886 - Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball N/A
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Recruiting NCT06019832 - Analysis of Stem and Non-Stem Tibial Component N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Recruiting NCT04575194 - Study of the Cardiometabolic Effects of Obesity Pharmacotherapy Phase 4
Completed NCT04513769 - Nutritious Eating With Soul at Rare Variety Cafe N/A
Withdrawn NCT03042897 - Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Recruiting NCT05917873 - Metabolic Effects of Four-week Lactate-ketone Ester Supplementation N/A
Active, not recruiting NCT04353258 - Research Intervention to Support Healthy Eating and Exercise N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Completed NCT01870947 - Assisted Exercise in Obese Endometrial Cancer Patients N/A
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Recruiting NCT05371496 - Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction Phase 2