Clinical Trials Logo

Neuroectodermal Tumors clinical trials

View clinical trials related to Neuroectodermal Tumors.

Filter by:
  • Withdrawn  
  • Page 1

NCT ID: NCT04521946 Withdrawn - Malignant Glioma Clinical Trials

Chemotherapy and Donor Stem Transplant for the Treatment of Patients With High Grade Brain Cancer

Start date: January 14, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects and effectiveness of chemotherapy followed by a donor (allogeneic) stem cell transplant when given to patients with high grade brain cancer. Chemotherapy drugs, such as fludarabine, thiotepa, etoposide, melphalan, and rabbit anti-thymocyte globulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.

NCT ID: NCT02689336 Withdrawn - Glioma Clinical Trials

Erlotinib in Combination With Temozolomide in Treating Relapsed/Recurrent/Refractory Pediatric Solid Tumors

Start date: August 6, 2016
Phase: Phase 2
Study type: Interventional

This study proposes to treat patients with the combination of erlotinib and temozolomide. Patients with relapsed, recurrent, refractory, or high risk malignancies whose tumors possess a non-synonymous mutation in EGFR, ERBB2, or JAK2V617F (JAK2) will be eligible for the study. Very few phase 2 clinical trials have been performed in pediatrics using targeted agents in combination with conventional chemotherapy agents. Furthermore, since some combinations such as the combination of this study (erlotinib and temozolomide) have shown additive/synergistic effects in preclinical studies, therapy selecting for those patients who possess mutations targeted by the TKI of the study, may unveil activity that has not been previously observed. Thus, the investigators hope to determine whether the addition of additive/synergistic chemotherapy will increase efficacy of target agent and/or increase tumor susceptibility to targeted agent resulting in increased anti-tumor activity.

NCT ID: NCT02194452 Withdrawn - Adult Glioblastoma Clinical Trials

Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

Start date: September 2013
Phase: N/A
Study type: Interventional

This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.

NCT ID: NCT02011126 Withdrawn - Rhabdomyosarcoma Clinical Trials

Imetelstat Sodium in Treating Younger Patients With Relapsed or Refractory Solid Tumors

Start date: June 30, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and how well imetelstat sodium works in treating younger patients with relapsed or refractory solid tumors. Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01795430 Withdrawn - Clinical trials for Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

Whole-Body Radiation Therapy, Systemic Chemotherapy, and High-Dose Chemotherapy Followed By Stem Cell Rescue in Treating Patients With Poor-Risk Ewing Sarcoma

Start date: July 2013
Phase: N/A
Study type: Interventional

This pilot clinical trial studies whole-body radiation therapy, systemic chemotherapy, and high-dose chemotherapy followed by stem cell rescue in treating patients with poor-risk Ewing sarcoma. Giving chemotherapy and radiation therapy before a peripheral blood stem cell or bone marrow transplant stops the growth of tumor cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is given to prepare the bone marrow for stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy