Clinical Trials Logo

Clinical Trial Summary

Corneal disease is a leading cause of blindness in the world. A shortage of corneal donor tissue has prevented many patients from regaining vision. Additionally, refractive error such as myopia is a major cause of impaired visual function worldwide. Although refractive error is correctable by procedures that modify the refractive power of the cornea, these procedures often weaken corneal integrity and have risk of complications. This study aims to evaluate the safety and efficacy of corneal surface epithelium repair and regeneration in the treatment of corneal surface diseases and refractive error using autologous limbal stem cell transplantation.


Clinical Trial Description

The corneal surface is comprised of a unique type of non-keratinized epithelial cell. These cells are arranged in an orderly fashion, which is essential for vision by maintaining the transparency of the visual axis.

Chemical injury and pterygia may damage the limbus, the zone between the cornea and the bulbar conjunctiva, and cause limbal stem cell (LSC) deficiency. They represent major treatable causes of vision loss worldwide. A shortage of corneal donor tissue prevents many patients from regaining vision, necessitating new treatment strategies to circumvent this limitation. Transplantation of stem cells represents an appealing therapeutic strategy in regenerative medicine, and the use of endogenous stem cells provides a possible solution to the problem of immune rejection.

Currently, LASIK (laser-assisted in situ keratomileusis) is the most commonly performed laser vision correction procedure in the world (over 10 million surgeries each year); however, it has a major disadvantage in that it weakens corneal integrity and structure and predisposes to complications such as keratectasia or keratoconus (bulging of the cornea) and vision loss. An alternative is photo-refractive keratectomy (PRK), which removes the corneal epithelium and anterior stroma while minimizing the incidence of keratectasia or keratoconus. The primary drawbacks of PRK are that it requires a longer recovery time (the corneal epithelium must regenerate from the patient's own LSCs) and may result in blurry vision and pain due to corneal pain nerve fiber exposure after removal of the epithelium. Coverage of exposed corneal stroma tissue immediately after surgery with LSC-derived corneal epithelial cells will solve this key bottleneck and make laser eye surgery safer and more comfortable for millions of people.

It is known that corneal renewal and repair are mediated by stem cells in the limbus. Autologous LSC transplantation has been reported previously (Rama et al.). However, mouse feeder cells were required to expand LSCs in culture. We have successfully developed a feeder-free, chemically defined medium in which to expand LSCs. These expanded LSCs can repair and regenerate corneal surfaces (Ouyang et al., in press).

Hypothesis: The trial will demonstrate whether a new technique, transplantation of LSCs expanded from limbal tissue of the uninjured eye, can improve the visual function of patients with unilateral corneal ocular surface disease. In addition, it will show whether there is more rapid recovery and improved visual outcomes following PRK if expanded LSCs are used to cover the cornea. The study will also compare the incidence of complications and characterize visual outcomes in patients treated with the new technique versus the control technique. ;


Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02148016
Study type Interventional
Source Sun Yat-sen University
Contact Ying Lin, MD, PhD
Email lylytulip@126.com
Status Recruiting
Phase Phase 1/Phase 2
Start date December 2012
Completion date September 2014

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04923841 - Myopia Control Using Bright Light Therapy, Myopic Defocus and Atropine N/A
Active, not recruiting NCT04080128 - Examination of Myopia Progression and Soft Bifocal Contact Lens Myopia Control N/A
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Completed NCT04604405 - Effects of 650nm Low Energy Light on Human Retina and Choroid Microcirculation N/A
Recruiting NCT05594719 - The Effect of Sun-like Spectrum With Different Spectrum Composition on Retinal Blood Flow N/A
Completed NCT05594732 - The Effects of Different Outdoor Light Exposure Modes on Retinal Blood Flow N/A
Completed NCT04492397 - Comparing The Performance Of Two Different Daily Disposable Lenses (MIKI) N/A
Completed NCT04536571 - Vision Stability and Preference for Soft Toric vs. Soft Spherical Contact Lenses N/A
Completed NCT06046209 - Comparing a Monthly Replacement Lens Versus a Daily Disposable Lens N/A
Recruiting NCT06344572 - Pivotal Study of SAT-001 in Treatment of Pediatric Patient With Myopia Phase 3
Recruiting NCT05611294 - Contralateral Study of Topography Guided LASIK Versus Small Incision Lenticule Extraction N/A
Completed NCT05656885 - Clinical Evaluation of Two Frequent Replacement Soft Spherical Contact Lenses N/A
Active, not recruiting NCT05534022 - Clinical Evaluation of a Myopia Control Lens in Slowing Myopia Progression. N/A
Completed NCT03934788 - the Clinical Performance of the Oxysoft Daily Disposable Silicone Hydrogel Soft Contact Lens N/A
Completed NCT03701516 - Clinical Evaluation of Etafilcon A Contact Lenses Using a Novel Molding Process 2 N/A
Completed NCT05538754 - Post-Market Evaluation of the EVO ICL N/A
Completed NCT03139201 - Clinical Performance of the OxyAqua Daily Disposable Silicone Hydrogel Soft Contact Lens N/A
Completed NCT02555722 - Evaluation of the CooperVision, Inc. Fanfilcon A and Enfilcon A Daily Wear Contact Lenses When Used for Frequent Replacement for up to One (1) Month of Daily Wear N/A
Not yet recruiting NCT06009458 - Acuity 200™ (Fluoroxyfocon A) Orthokeratology Contact Lens for Overnight Wear N/A
Recruiting NCT05548478 - Corneal Endothelial Cell Injury Induced by Mitomycin-C N/A