Myelodysplastic Syndromes Clinical Trial
Official title:
High-Tc Susceptometer to Monitor Transfusional Iron Overload (NSR Device)
The proposed research project will continue the application and development of a new method (biomagnetic susceptometry) that measures magnetic fields to determine how much iron is in the liver. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. Measuring the amount of iron in the body is important because either too much (iron overload) or too little iron (iron deficiency) can be harmful. At present, the most reliable way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy, either by surgery or by using a needle which pierces the skin and liver. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. In patients with iron overload, the investigators previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. In the past the investigators have developed a device to measure the amount of magnetization, which was called a SQUID (Superconducting QUantum Interference Device) susceptometer. This device was validated and in use for over 20 years. The safety, ease, rapidity and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. The investigators have now developed a new susceptometer, which uses very similar technology to the SQUID, but the investigators believe is more accurate and precise. This study aims to validate this new instrument. The investigators will do prospective, serial studies of the diagnosis and management of patients with iron overload, including thalassemia major (Cooley's anemia), sickle cell disease, aplastic anemia, myelodysplasia, hereditary hemochromatosis, and other disorders. Funding Source - FDA OOPD.
This project will validate our new high-transition-temperature (high-Tc; operating at 77°K,
cooled by liquid nitrogen) superconducting magnetic susceptometer as the most clinically
effective means for monitoring iron overload in patients who require chronic red blood cell
transfusion. Transfusional iron overload is an orphan disease that develops in patients who
require regular blood transfusions for treatment of a variety of refractory anemias that are
themselves orphan disorders, including sickle-cell disease, thalassemia major (Cooley's
anemia), Diamond-Blackfan anemia, aplastic anemia, pure red cell aplasia, hypoplastic and
myelodysplastic disorders. In the United States, the number of anemic patients with
transfusional iron overload is estimated to be less than 50,000. Without iron-chelating
therapy, potentially lethal amounts of iron accumulate in these patients. Because the body
lacks an effective means to eliminate excess iron, the iron contained in transfused red
cells is progressively deposited in the liver, heart, pancreas and other organs. Cirrhosis,
heart failure, diabetes and other disorders develop. Treatment with a chelating agent
capable of sequestering iron and permitting its excretion from the body provides a means of
managing transfusional iron overload that can prolong survival and avert or ameliorate
iron-induced organ damage. Two iron-chelating agents are now approved for use in the U.S.
for the treatment of transfusional iron overload: (1) deferoxamine B (Desferal®), a
parenteral agent in use for almost four decades, and (ii) deferasirox (Exjade®), an orally
administered agent introduced in 2005. With both chelators, optimal management of patients
requires careful monitoring of body iron to prevent iron-induced toxicity while avoiding
adverse effects of excessive chelator administration. Our laboratories originally proposed
that storage iron (ferritin and hemosiderin) could be non-invasively assessed in vivo by
measurement of magnetic susceptibility. We subsequently developed low-transition-temperature
(low-Tc; operating at 4°K, cooled by liquid helium) superconducting quantum interference
device (SQUID) susceptometry as a clinical method for quantitation of hepatic iron stores.
The transition temperature is the temperature at which the electrical resistance of a
superconducting material drops to zero. The safety, ease, rapidity and comfort of magnetic
measurements have made frequent, serial investigations technically feasible and practically
acceptable to patients. Susceptometry permits accurate, direct, reliable, and repeated
measurements of hepatic iron stores. Despite these advantages, the cost (about $1,000,000
per device), instrumental complexity and need for liquid-helium cooling of the low-Tc
susceptometers restricted clinical adoption of the method. Worldwide, only four low-Tc
susceptometers have been used clinically (in New York, Oakland, Hamburg and Turin).
Recently, with the support of a Bioengineering Research Partnership Grant (R01 DK057209), we
have made a series of technological breakthroughs and instrumental innovations that have
made possible replacement, redesign and refinement of the elements of the low-Tc
susceptometer, operating at 4°K in liquid helium, with components able to function at 77°K
in liquid nitrogen. This new high-Tc susceptometer, the first medical device utilizing the
phenomenon of high-temperature superconductivity, is an inexpensive instrument that can
easily be used in a hospital environment. These Phase 2 clinical studies are designed to
test the hypothesis that measurements of hepatic iron stores with our new high-Tc
susceptometer are clinically superior to all other available methods and to supply essential
data needed for FDA approval of the medical device. The proposed project has three specific
aims:
1. to calibrate the high-Tc susceptometer with the results of biochemical analysis of
tissue from liver explants from adult and pediatric patients undergoing liver
transplantation and from clinically indicated liver biopsy; and
2. to prospectively validate the high-Tc susceptometer using the results of biochemical
analysis of tissue from liver explants from adult and pediatric patients undergoing
liver transplantation and from clinically indicated liver biopsy; and
3. to prospectively compare measurements of hepatic iron concentration by the high-Tc
susceptometer with (i) estimates derived from liver magnetic resonance imaging (MRI)
relaxation rates (R2, R2*, signal intensity ratios), (ii) with determinations of serum
ferritin, and (iii) with histopathological examination, using biochemical analysis of
liver storage iron concentrations as the reference standard.
FDA approval of an affordable, readily usable instrument for the non-invasive measurement of
hepatic iron stores would lead to major advances in the management of patients with
transfusional iron overload that would find immediate and widespread clinical use both in
the U.S. and worldwide.
;
Time Perspective: Prospective
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05400122 -
Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer
|
Phase 1 | |
Terminated |
NCT04313881 -
Magrolimab + Azacitidine Versus Azacitidine + Placebo in Untreated Participants With Myelodysplastic Syndrome (MDS)
|
Phase 3 | |
Recruiting |
NCT05088356 -
Reduced Intensity Allogeneic HCT in Advanced Hematologic Malignancies w/T-Cell Depleted Graft
|
Phase 1 | |
Recruiting |
NCT04003220 -
Idiopathic Chronic Thrombocytopenia of Undetermined Significance : Pathogenesis and Biomarker
|
||
Completed |
NCT02916979 -
Myeloid-Derived Suppressor Cells and Checkpoint Immune Regulators' Expression in Allogeneic SCT Using FluBuATG
|
Phase 1 | |
Active, not recruiting |
NCT03755414 -
Study of Itacitinib for the Prophylaxis of Graft-Versus-Host Disease and Cytokine Release Syndrome After T-cell Replete Haploidentical Peripheral Blood Hematopoietic Cell Transplantation
|
Phase 1 | |
Completed |
NCT00003270 -
Chemotherapy, Radiation Therapy, and Umbilical Cord Blood Transplantation in Treating Patients With Hematologic Cancer
|
Phase 2 | |
Recruiting |
NCT04904588 -
HLA-Mismatched Unrelated Donor Hematopoietic Cell Transplantation With Post-Transplantation Cyclophosphamide
|
Phase 2 | |
Terminated |
NCT04866056 -
Jaktinib and Azacitidine In Treating Patients With MDS With MF or MDS/MPN With MF.
|
Phase 1/Phase 2 | |
Recruiting |
NCT04701229 -
Haploinsufficiency of the RBM22 and SLU7 Genes in Del(5q) Myelodysplastic Syndromes
|
||
Suspended |
NCT04485065 -
Safety and Efficacy of IBI188 With Azacitidine in Subjects With Newly Diagnosed Higher Risk MDS
|
Phase 1 | |
Recruiting |
NCT04174547 -
An European Platform for Translational Research in Myelodysplastic Syndromes
|
||
Enrolling by invitation |
NCT04093570 -
A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers
|
Phase 2 | |
Completed |
NCT02508870 -
A Study of Atezolizumab Administered Alone or in Combination With Azacitidine in Participants With Myelodysplastic Syndromes
|
Phase 1 | |
Completed |
NCT04543305 -
A Study of PRT1419 in Patients With Relapsed/Refractory Hematologic Malignancies
|
Phase 1 | |
Recruiting |
NCT05384691 -
Efficacy of Luspatercept in ESA-naive LR-MDS Patients With or Without Ring Sideroblasts Who do Not Require Transfusions
|
Phase 2 | |
Recruiting |
NCT05365035 -
A Phase II Study of Cladribine and Low Dose Cytarabine in Combination With Venetoclax, Alternating With Azacitidine and Venetoclax, in Patients With Higher-risk Myeloproliferative Chronic Myelomonocytic Leukemia or Higher-risk Myelodysplastic Syndromes With Excess Blasts
|
Phase 2 | |
Recruiting |
NCT06008405 -
Clinical Trial Evaluating the Safety of the TQB2928 Injection Combination Therapy
|
Phase 1 | |
Not yet recruiting |
NCT05969821 -
Clonal Hematopoiesis of Immunological Significance
|
||
Withdrawn |
NCT05170828 -
Cryopreserved MMUD BM With PTCy for Hematologic Malignancies
|
Phase 1 |