Mitochondrial Diseases Clinical Trial
— EX-MITO-DYS-IROfficial title:
Exercise-mediated Rescue of Mitochondrial Derangements Driving Insulin Resistance in Humans (EX-MITO-DYS-IR)
The overarching aim of this intervention study is to interrogate the interconnection between the muscle mitochondrial adaptations and the changes in muscle insulin sensitivity elicited by exercise training in individuals harbouring pathogenic mitochondrial DNA mutations associated with an insulin-resistant phenotype. In a within-subject parallel-group longitudinal design, participants will undergo an exercise training intervention with one leg, while the contralateral leg will serve as an inactive control. After the exercise intervention, patients will attend an experimental trial including: - A hyperinsulinemic-euglycemic clamp combined with measurements of femoral artery blood flow and arteriovenous difference of glucose - Muscle biopsy samples
Status | Recruiting |
Enrollment | 15 |
Est. completion date | December 2025 |
Est. primary completion date | December 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Known m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial leucyl-tRNA 1 gene - Other known mtDNA point mutations Exclusion Criteria: - Use of antiarrhythmic medications or other medications which, in the opinion of the investigators, have the potential to affect outcome measures. - Diagnosed severe heart disease, dysregulated thyroid gland conditions, or other dysregulated endocrinopathies, or other conditions which, in the opinion of the investigators, have the potential to affect outcome measures. - Pregnancy |
Country | Name | City | State |
---|---|---|---|
Denmark | Rigshospitalet | Copenhagen |
Lead Sponsor | Collaborator |
---|---|
Rigshospitalet, Denmark | University of Copenhagen |
Denmark,
DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991 Mar;14(3):173-94. doi: 10.2337/diacare.14.3.173. — View Citation
DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149-55. doi: 10.1172/JCI111938. — View Citation
DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982 Oct;23(4):313-9. doi: 10.1007/BF00253736. — View Citation
Deshmukh AS, Steenberg DE, Hostrup M, Birk JB, Larsen JK, Santos A, Kjobsted R, Hingst JR, Scheele CC, Murgia M, Kiens B, Richter EA, Mann M, Wojtaszewski JFP. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat Commun. 2021 Jan 12;12(1):304. doi: 10.1038/s41467-020-20556-8. Erratum In: Nat Commun. 2021 Mar 5;12(1):1600. — View Citation
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev. 2020 Jun 1;41(3):bnaa005. doi: 10.1210/endrev/bnaa005. — View Citation
DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006 Nov;18(6):636-41. doi: 10.1097/01.bor.0000245729.17759.f2. — View Citation
Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008 Aug;83(2):254-60. doi: 10.1016/j.ajhg.2008.07.004. — View Citation
Frederiksen AL, Jeppesen TD, Vissing J, Schwartz M, Kyvik KO, Schmitz O, Poulsen PL, Andersen PH. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects. J Clin Endocrinol Metab. 2009 Aug;94(8):2872-9. doi: 10.1210/jc.2009-0235. Epub 2009 May 26. — View Citation
Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015 May;77(5):753-9. doi: 10.1002/ana.24362. Epub 2015 Mar 28. — View Citation
Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016 Nov;12(11):633-645. doi: 10.1038/nrendo.2016.104. Epub 2016 Jul 22. — View Citation
Lindroos MM, Majamaa K, Tura A, Mari A, Kalliokoski KK, Taittonen MT, Iozzo P, Nuutila P. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes. 2009 Mar;58(3):543-9. doi: 10.2337/db08-0981. Epub 2008 Dec 10. — View Citation
Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, van de Weijer T, Sels JP, Schrauwen P, Hesselink MK. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. 2010 Mar;59(3):572-9. doi: 10.2337/db09-1322. Epub 2009 Dec 22. — View Citation
O'Rahilly S. "Treasure Your Exceptions"-Studying Human Extreme Phenotypes to Illuminate Metabolic Health and Disease: The 2019 Banting Medal for Scientific Achievement Lecture. Diabetes. 2021 Jan;70(1):29-38. doi: 10.2337/dbi19-0037. — View Citation
Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005 Jun;5(3):177-83. doi: 10.1007/s11892-005-0006-3. — View Citation
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018 Oct 1;98(4):2133-2223. doi: 10.1152/physrev.00063.2017. — View Citation
Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, Won HH, Karczewski KJ, O'Donnell-Luria AH, Samocha KE, Weisburd B, Gupta N, Zaidi M, Samuel M, Imran A, Abbas S, Majeed F, Ishaq M, Akhtar S, Trindade K, Mucksavage M, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Hayyat Mallick N, Ishaq M, Rasheed SZ, Memon FU, Mahmood K, Ahmed N, Do R, Krauss RM, MacArthur DG, Gabriel S, Lander ES, Daly MJ, Frossard P, Danesh J, Rader DJ, Kathiresan S. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017 Apr 12;544(7649):235-239. doi: 10.1038/nature22034. — View Citation
Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR 3rd, Dasari S, Nair KS. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes. 2016 Mar;65(3):561-73. doi: 10.2337/db15-0823. Epub 2015 Dec 30. — View Citation
* Note: There are 17 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Leg muscle mass | Leg muscle mass is determined by dual-energy X-ray absorptiometry | Baseline | |
Primary | Skeletal muscle insulin sensitivity | Insulin-stimulated muscle glucose uptake is determined by the hyperinsulinemic-euglycemic clamp method integrated with measurements of femoral artery blood flow and arteriovenous difference of glucose | 90-150 minutes after initiation of a hyperinsulinemic euglycemic clamp | |
Primary | Muscle mitochondrial respiration | Mitochondrial O2 flux is measured by high-resolution respirometry in permeabilized fibers from muscle biopsy samples | Baseline | |
Primary | Muscle mitochondrial reactive oxygen species (ROS) production | Mitochondrial H2O2 emission rates are measured by high-resolution fluorometry in permeabilized fibers from muscle biopsy samples | Baseline | |
Primary | Muscle mitochondrial proteome | Mitochondrial proteome signatures are determined by mass spectrometry-based proteomics in muscle biopsy samples | Baseline | |
Secondary | Muscle mtDNA heteroplasmy | mtDNA mutation load is measured in muscle biopsy samples from the patients with mitochondrial myopathy | Baseline | |
Secondary | Muscle insulin signaling | Insulin-mediated changes in the abundance of (phosphorylated) proteins modulating insulin action are measured by immunoblotting in muscle and fat biopsy samples | Before (baseline) and 150 minutes after initiation of the hyperinsulinemic-euglycemic clamp | |
Secondary | Muscle integrated stress response signaling proteins | Abundance of (phosphorylated) proteins governing the integrated stress response pathway is measured by immunoblotting in muscle biopsy samples. | Baseline | |
Secondary | Muscle integrated stress response genes | mRNA content of genes governing the integrated stress response pathway is measured by Real-Time PCR in muscle biopsy samples. | Baseline | |
Secondary | Muscle release of FGF21 and GDF15 | Skeletal muscle production of FGF21 and GDF15 is determined by measurements of femoral artery blood flow and arteriovenous difference of plasma FGF21 and GDF15 | Before (baseline) and 0-150 minutes after initiation of the hyperinsulinemic-euglycemic clamp | |
Secondary | Whole-body insulin sensitivity | Whole-body insulin sensitivity is determined by the hyperinsulinemic-euglycemic clamp method | 90-150 minutes after initiation of a hyperinsulinemic euglycemic clamp |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03388528 -
Low Residue Diet Study in Mitochondrial Disease
|
N/A | |
Completed |
NCT04378075 -
A Study to Evaluate Efficacy and Safety of Vatiquinone for Treating Mitochondrial Disease in Participants With Refractory Epilepsy
|
Phase 2/Phase 3 | |
Completed |
NCT03678740 -
Diagnostic Odyssey Survey 2
|
||
Recruiting |
NCT06051448 -
Promoting Resilience in Stress Management (PRISM) and Clinical-focused Narrative (CFN) Pilot in Adults With Primary Mitochondrial Disease (PMD).
|
Phase 1/Phase 2 | |
Completed |
NCT02909400 -
The KHENERGY Study
|
Phase 2 | |
Completed |
NCT02398201 -
A Study of Bezafibrate in Mitochondrial Myopathy
|
Phase 2 | |
Completed |
NCT03857880 -
Identification of New Candidate Genes in Patients With Mitochondrial Disease by High Resolution Chromosome Analysis on DNA Chip
|
||
Not yet recruiting |
NCT06450964 -
Establishment of Reproductive Cohort and Prediction Model of Genetic Counseling for Mitochondrial Genetic Diseases
|
||
Completed |
NCT04165239 -
The KHENERGYZE Study
|
Phase 2 | |
Completed |
NCT02284334 -
Glycemic Index in Mitochondrial Disease
|
||
Recruiting |
NCT06080568 -
Human Mitochondrial Stress-driven Obesity Resistance
|
||
Recruiting |
NCT06080581 -
Mitochondrial Dysfunctions Driving Insulin Resistance
|
||
Recruiting |
NCT04802707 -
Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome
|
Phase 2 | |
Completed |
NCT04580979 -
Natural History Study of FDXR Mutation-related Mitochondriopathy
|
||
Completed |
NCT04594590 -
Natural History Study of SLC25A46 Mutation-related Mitochondriopathy
|
||
Withdrawn |
NCT03866954 -
Trial of Erythrocyte Encapsulated Thymidine Phosphorylase In Mitochondrial Neurogastrointestinal Encephalomyopathy
|
Phase 2 | |
Recruiting |
NCT04113447 -
Mitochondrial Donation: An 18 Month Outcome Study.
|
||
Enrolling by invitation |
NCT04734626 -
CrCest Study in Primary Mitochondrial Disease
|
||
Completed |
NCT03832218 -
Executive Function Disorders and Anxio-depressive Symptomatology in Children and Adolescents With Mitochondrial Pathologies
|
N/A | |
Terminated |
NCT02473445 -
A Long-term Extension of Study RP103-MITO-001 (NCT02023866) to Assess Cysteamine Bitartrate Delayed-release Capsules (RP103) in Children With Inherited Mitochondrial Disease
|
Phase 2 |