Clinical Trials Logo

Minimal Residual Disease clinical trials

View clinical trials related to Minimal Residual Disease.

Filter by:

NCT ID: NCT04044560 Terminated - Clinical trials for Minimal Residual Disease

Blinatumomab for MRD in Pre-B ALL Patients Following Stem Cell Transplant

OZM-097
Start date: September 8, 2020
Phase: Phase 2
Study type: Interventional

This is a single arm, open label, multi-centre phase II study using blinatumomab for treatment of detectable minimal residual disease (MRD) in the first year following allogeneic hematopoietic stem cell transplant (HSCT) for patients with B cell acute lymphoblastic leukemia (B-ALL). The study has 2 phases: 1. MRD testing phase and 2. blinatumomab treatment phase. Participants with B-ALL planning for HSCT meeting other eligibility criteria will be enrolled onto the MRD testing phase, which will involve centralized MRD testing of bone marrow aspirate samples on day +56, +100, +180, +270 following HSCT. Participants with detectable MRD ≥10^-4 leukemic cells/total nucleated cells will enroll onto the treatment phase. Blinatumomab treatment will be started following detection of MRD after 7 to 42 days from enrollment onto the treatment phase to allow for initiation of taper of immunosuppressive medications.

NCT ID: NCT04029038 Withdrawn - Clinical trials for Refractory Chronic Lymphocytic Leukemia

Modified Immune Cells (CD19-CD22 CAR T Cells) in Treating Patients With Recurrent or Refractory CD19 Positive, CD22 Positive Leukemia or Lymphoma

Start date: May 15, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of modified immune cells called CD19-CD22 chimeric antigen receptor (CAR) T cells in treating patients with CD19 positive(+), CD22+ B-acute lymphoblastic leukemia, chronic lymphocytic leukemia, or non-Hodgkin's lymphoma that has come back (recurrent) or does not respond to treatment (refractory). T-cells are collected from the patient and genetic materials called "chimeric antigen receptors (CAR)" are transferred to the collected T-cells. The CAR T-cells are then infused back to the patient's body. Giving CD19- CD22 CAR T cells after chemotherapy may help to control the disease.

NCT ID: NCT03699384 Withdrawn - Clinical trials for Acute Myeloid Leukemia (AML)

Safety and Clinical Activity Study of Combination Azacitidine and Avelumab in Patients With Acute Myeloid Leukemia (AML) and Minimal Residual Disease (MRD)

Start date: October 3, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

This is a phase I / II study. The purposes of this study are to: 1) find out what effects, good and/or bad, the combination of the experimental drug avelumab and the drug azacitidine has on people with AML and MRD, and 2) test if the two drugs, avelumab and azacitidine, are effective in getting rid of AML MRD when the drugs are given together in combination.

NCT ID: NCT03665480 Recruiting - Clinical trials for Acute Myeloid Leukemia

The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML

Start date: September 4, 2018
Phase: Phase 2/Phase 3
Study type: Interventional

Granulocyte-colony stimulating factor (G-CSF) is konwn to have no significant effect on leukemia stem cells and has been widely used in the patients with agranulocytosis after chemotherapy. Minimal residual disease (MRD), an index for early treatment response, plays an important role in prognostic prediction. Numbers of data have shown MRD at day 14 after induction therapy significantly predicts prognosis. However, the retrospetive data from the investigators showed that patients with G-CSF treatment after induction had higher MRD at day 14 but not significantly different at day 28, suggesting that G-CSF might work on the differenciation of hemapoetic stem cells and increase MRD levels at day 14. In this multicenter prospective randomized controlled study, the effect of G-CSF on MRD after induction therapy in newly diagnosed acute myeloid leukemia (AML) is evaluated.

NCT ID: NCT03624530 Recruiting - Clinical trials for Minimal Residual Disease

Effect of Prophylactic TKI Therapy Post-transplants on Ph+ ALL Undergoing Allo-HSCT With MRD Positive Pre-transplants

Start date: August 2018
Phase: Phase 2/Phase 3
Study type: Interventional

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in early first complete remission improves the long-term outcomes for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Relapse remains a major cause of treatment failure even after allo-HSCT. The prevention of relapse is essential for improving the outcome of Ph+ ALL. Our previous clinical trial (ID: NCT01883219) demonstrated that pre-emptive tyrosine kinase inhibitor (TKIs) administration based on minimal residual disease (MRD) and BCR-ABL mutation after allo-HSCT might reduce the incidence of relapses and improve survival for patients with Ph+ ALL. Moreover, our result suggested that Ph+ ALL with MRD positive pre-transplants had the higher rate of molecular biology relapse. In this study, we will evaluate the safety and efficacy of prophylactic TKI therapy post-transplants on Ph+ ALL undergoing allo-HSCT with MRD positive pre-transplants.

NCT ID: NCT03537599 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Daratumumab and Donor Lymphocyte Infusion in Treating Participants With Relapsed Acute Myeloid Leukemia After Stem Cell Transplant

Start date: January 10, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of donor lymphocyte infusions when given together with daratumumab and to see how well they work in treating participants with acute myeloid leukemia that has come back after a stem cell transplant. A donor lymphocyte infusion is a type of therapy in which lymphocytes (white blood cells) from the blood of a donor are given to a participant who has already received a stem cell transplant from the same donor. The donor lymphocytes may kill remaining cancer cells. Monoclonal antibodies, such as daratumumab, may interfere with the ability of cancer cells to grow and spread. Giving daratumumab and donor white blood cells may work better in treating participants with acute myeloid leukemia.

NCT ID: NCT03516279 Recruiting - Clinical trials for Minimal Residual Disease

Pembrolizumab and Dasatinib, Imatinib Mesylate, or Nilotinib in Treating Patients With Chronic Myeloid Leukemia and Persistently Detectable Minimal Residual Disease

Start date: June 26, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well pembrolizumab and dasatinib, imatinib mesylate, or nilotinib work in treating patients with chronic myeloid leukemia and persistent detection of minimal residual disease, defined as the levels of a gene product called bcr-abl in the blood. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of cancer cells to grow and spread. Dasatinib, imatinib mesylate, and nilotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and dasatinib, imatinib mesylate, or nilotinib may work better in treating patients with chronic myeloid leukemia.

NCT ID: NCT03494569 Recruiting - Clinical trials for Acute Myeloid Leukemia

Total Marrow and Lymphoid Irradiation, Fludarabine, and Melphalan Before Donor Stem Cell Transplant in Treating Participants With High-Risk Acute Leukemia or Myelodysplastic Syndrome

Start date: July 6, 2018
Phase: Phase 1
Study type: Interventional

This phase I studies the side effects and best dose of total marrow and lymphoid irradiation when given together with fludarabine and melphalan before donor stem cell transplant in treating participants with high-risk acute leukemia or myelodysplastic syndrome. Giving chemotherapy, such as fludarabine and melphalan, and total marrow and lymphoid irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT03326921 Suspended - Leukemia Clinical Trials

HA-1 T TCR T Cell Immunotherapy for the Treatment of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

Start date: February 23, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.

NCT ID: NCT03297528 Recruiting - Acute Leukemia Clinical Trials

Chemotherapy and DLI for Prevention of Second Relapse in Patients With Relapsed Acute Leukemia After Allotransplant

Start date: March 1, 2017
Phase: Phase 2
Study type: Interventional

Patients with acute leukemia relapsing after allotransplant and who respond to anti-leukaemia interventions are at high-risk of a second relapse. Previous studies from investigators reported an association between a positive minimal residual disease (MRD)-test after transplant and an increased risk of subsequent relapse. Also, patients developing chronic graft-versus-host disease (GvHD) after receiving DLI (donor lymphocyte infusion)for leukemia relapse after a first allotransplant have a lower likelihood of a second relapse compared with similar patients not developing chronic GvHD. And, our previous study also reported patients with chronic GvHD after DLI was associated with a greater frequency of a negative MRD-test and lower likelihood of subsequent relapse compared with similar persons not developing chronic GvHD. Based on these data the investigators designed a randomized control study to determine whether giving additional consolidation chemotherapy and DLI might decrease likelihood of second relapse in persons without chronic GvHD or with a positive MRD-test after initial post-relapse therapy with induction chemotherapy and DLI.