Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT03698162
Other study ID # 6B-17-2
Secondary ID NCI-2018-018906B
Status Terminated
Phase N/A
First received
Last updated
Start date April 13, 2021
Est. completion date November 22, 2023

Study information

Verified date January 2024
Source University of Southern California
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) is a potentially powerful diagnostic tool for the management of brain cancer and other conditions in which the blood-brain barrier is compromised. This trial studies how well precise DCE MRI works in diagnosing participants with high grade glioma that has come back or melanoma that has spread to the brain. The specially-tailored acquisition and reconstruction (STAR) DCE MRI could provide improved assessment of brain tumor status and response to therapy.


Description:

PRIMARY OBJECTIVES: I. To optimize and technically validate specially-tailored acquisition and reconstruction (STAR) DCE-MRI based on the accuracy and reproducibility of whole-brain tracer-kinetic (TK) parameter maps. SECONDARY OBJECTIVES: I. To develop a robust clinical implementation of STAR DCE-MRI. II. To clinically evaluate STAR DCE-MRI in patients with brain tumors. OUTLINE: Participants are assigned to 1 of 2 cohorts. COHORT I: Participants with recurrent high-grade glioma undergo STAR DCE-MRI every 2 months, and just prior to and 4-6 weeks after starting bevacizumab treatment. If there is concern for tumor progression (i.e. increased contrast enhancement), more frequent MRI scans will be scheduled. COHORT II: Participants with melanoma brain metastases undergo STAR DCE-MRI at baseline and 4-6 weeks after therapy. Participants may undergo more frequent MRI if there is concern for tumor progression.


Recruitment information / eligibility

Status Terminated
Enrollment 14
Est. completion date November 22, 2023
Est. primary completion date November 22, 2023
Accepts healthy volunteers No
Gender All
Age group 21 Years and older
Eligibility Inclusion Criteria: - COHORT I: Recurrent high-grade glioma (often with thin areas of enhancement) treated with bevacizumab. - COHORT I: We will include adult patients with histopathologically confirmed high-grade glioma with evidence of tumor progression at baseline MRI who will undergo treatment with an anti-angiogenic agent (bevacizumab) with or without concomitant chemotherapy, and Karnofsky Performance Score > 60%. - COHORT I: At least 30 days should have elapsed since prior therapy including surgery and temozolomide chemoradiation. - COHORT I: Satisfactory renal, hepatic, and hematologic function is required. - COHORT II: Melanoma brain metastases (often small and spread throughout the brain) treated with immunotherapy. - COHORT II: We will include adult patients with a tissue-proven history of melanoma who have contrast enhancing brain masses who will undergo treatment with immunotherapy with an anti-CTLA-4 or anti-PD-1 approach (e.g. ipilimumab, pembrolizumab, or nivolumab), and Karnofsky Performance Score > 60%. - COHORT II: At least 30 days should have elapsed since prior therapy including surgery, stereotactic brain irradiation, and corticosteroid use. Exclusion Criteria: - COHORT I: Exclusion criteria include treatment with any other anti-cancer treatment, enzyme-inducing antiepileptic agents, anticoagulant treatment, pregnancy, other anti-angiogenesis therapy and prior thrombo-embolic disorders. - COHORT I: Exclusion criteria will include the standard contraindications for MRI: 1) prior work as a machinist or metal worker, or history of metal being removed from the eyes, 2) cardiac pacemaker or internal pacing wires, 3) non-MRI compatible vena cava filter, vascular aneurysm clip, heart valve, spinal or ventricular shunt, optic implant, neuro-stimulator unit, ocular implant, or intrauterine device, or 4) claustrophobia, or uncontrollable motion disorder. - COHORT I: Pregnant women, prisoners, and institutionalized individuals will be excluded. - COHORT II: Exclusion criteria include treatment with any other anti-cancer treatment, and other immunotherapy exclusion criteria. - COHORT II: Non-cutaneous melanomas will be excluded. - COHORT II: Exclusion criteria will include the standard contraindications for MRI: 1) prior work as a machinist or metal worker, or history of metal being removed from the eyes, 2) cardiac pacemaker or internal pacing wires, 3) non-MRI compatible vena cava filter, vascular aneurysm clip, heart valve, spinal or ventricular shunt, optic implant, neuro-stimulator unit, ocular implant, or intrauterine device, or 4) claustrophobia, or uncontrollable motion disorder. - COHORT II: Pregnant women, prisoners, and institutionalized individuals will be excluded.

Study Design


Intervention

Device:
Dynamic Contrast-Enhanced Magnetic Resonance Imaging
Undergo STAR DCE-MRI
Drug:
Bevacizumab Injection
Bevacizumab will be give to participants who have recurrent high-grade glioma as part of standard of care.

Locations

Country Name City State
United States USC / Norris Comprehensive Cancer Center Los Angeles California

Sponsors (2)

Lead Sponsor Collaborator
University of Southern California National Cancer Institute (NCI)

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Volume transfer constant (Ktrans) The raw data will be acquired at the voxel level. Then the analytic parameters will be extracted from voxel-wise data such as the mean, median, interquartile range, skewness and kurtosis. Receiver-operating characteristic curves (ROC) will be used to illustrate the univariate prediction accuracy for each parameter in predicting the clinically determined outcome. The pattern of change with different clinical response status will be visually illustrated using spaghetti plots or other graphical approaches. Classification and Regression Tree (CART) with 10-fold cross validation will be used for building the final prediction model and determine the diagnostic cut point(s). CART analysis will also include demographics, comorbidity information, and relevant biological variables including sex. The final model accuracy will be assessed using area under the curve (AUC) when fitting a ROC curve using predicted outcome against the actual outcome. Up to 3 years
Primary Fractional plasma volume (vp) The raw data will be acquired at the voxel level. Then the analytic parameters will be extracted from voxel-wise data such as the mean, median, interquartile range, skewness and kurtosis. ROC will be used to illustrate the univariate prediction accuracy for each parameter in predicting the clinically determined outcome. The pattern of change with different clinical response status will be visually illustrated using spaghetti plots or other graphical approaches. CART with 10-fold cross validation will be used for building the final prediction model and determine the diagnostic cut point(s). CART analysis will also include demographics, comorbidity information, and relevant biological variables including sex. The final model accuracy will be assessed using AUC when fitting a ROC curve using predicted outcome against the actual outcome. Up to 3 years
Primary Fractional extravascular-extracellular space volume (ve) The raw data will be acquired at the voxel level. Then the analytic parameters will be extracted from voxel-wise data such as the mean, median, interquartile range, skewness and kurtosis. ROC will be used to illustrate the univariate prediction accuracy for each parameter in predicting the clinically determined outcome. The pattern of change with different clinical response status will be visually illustrated using spaghetti plots or other graphical approaches. CART with 10-fold cross validation will be used for building the final prediction model and determine the diagnostic cut point(s). CART analysis will also include demographics, comorbidity information, and relevant biological variables including sex. The final model accuracy will be assessed using AUC when fitting a ROC curve using predicted outcome against the actual outcome. Up to 3 years
Primary Model-free initial area under the contrast agent concentration curve (iAUC) The raw data will be acquired at the voxel level. Then the analytic parameters will be extracted from voxel-wise data such as the mean, median, interquartile range, skewness and kurtosis. ROC will be used to illustrate the univariate prediction accuracy for each parameter in predicting the clinically determined outcome. The pattern of change with different clinical response status will be visually illustrated using spaghetti plots or other graphical approaches. CART with 10-fold cross validation will be used for building the final prediction model and determine the diagnostic cut point(s). CART analysis will also include demographics, comorbidity information, and relevant biological variables including sex. The final model accuracy will be assessed using AUC when fitting a ROC curve using predicted outcome against the actual outcome. Up to 3 years
See also
  Status Clinical Trial Phase
Active, not recruiting NCT02224781 - Dabrafenib and Trametinib Followed by Ipilimumab and Nivolumab or Ipilimumab and Nivolumab Followed by Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAFV600 Melanoma Phase 3
Active, not recruiting NCT05470283 - Phase I, Open-Label, Study of Tumor Infiltrating Lymphocytes Engineered With Membrane Bound IL15 Plus Acetazolamide in Adult Patients With Metastatic Melanoma Phase 1
Recruiting NCT05388877 - E6201 and Dabrafenib for the Treatment of Central Nervous System Metastases From BRAF V600 Mutated Metastatic Melanoma Phase 1
Active, not recruiting NCT05103891 - Relative Bioavailability of Binimetinib 3 x 15 mg and 45 mg Formulations Phase 1
Completed NCT00414765 - Aldesleukin in Participants With Metastatic Renal Cell Carcinoma or Metastatic Melanoma Phase 4
Completed NCT02857270 - A Study of LY3214996 Administered Alone or in Combination With Other Agents in Participants With Advanced/Metastatic Cancer Phase 1
Completed NCT01621490 - PH 1 Biomarker Study of Nivolumab and Ipilimumab and Nivolumab in Combination With Ipilimumab in Advanced Melanoma Phase 1
Recruiting NCT05779423 - Cryoablation+Ipilimumab+Nivolumab in Melanoma Phase 2
Active, not recruiting NCT04940299 - Tocilizumab, Ipilimumab, and Nivolumab for the Treatment of Advanced Melanoma, Non-Small Cell Lung Cancer, or Urothelial Carcinoma Phase 2
Active, not recruiting NCT02278887 - Study Comparing TIL to Standard Ipilimumab in Patients With Metastatic Melanoma Phase 3
Active, not recruiting NCT02360579 - Study of Lifileucel (LN-144), Autologous Tumor Infiltrating Lymphocytes, in the Treatment of Patients With Metastatic Melanoma Phase 2
Terminated NCT02521870 - A Trial of Intratumoral Injections of SD-101 in Combination With Pembrolizumab in Patients With Metastatic Melanoma or Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Phase 1/Phase 2
Completed NCT02177110 - A Translational Systems Medicine Approach to Provide Predictive Capacity for Therapy Response in Advanced or Metastatic Malignant Melanoma
Withdrawn NCT01340729 - Open-Label Study of TPI 287 for Patients With Metastatic Melanoma Phase 1/Phase 2
Withdrawn NCT01416844 - Study of Immune Responses in Patients With Metastatic Melanoma Phase 2
Terminated NCT01468818 - Immunotherapy Using Tumor Infiltrating Lymphocytes for Patients With Metastatic Melanoma Phase 2
Completed NCT00984464 - Study of REOLYSIN® in Combination With Paclitaxel and Carboplatin in Patients With Metastatic Melanoma Phase 2
Completed NCT00631618 - Clinical Trial of Sutent to Treat Metastatic Melanoma Phase 2
Terminated NCT00571116 - Disulfiram Plus Arsenic Trioxide In Patients With Metastatic Melanoma and at Least One Prior Systemic Therapy Phase 1
Recruiting NCT00226473 - Standard Palliative Care Versus Standard Palliative Care Plus Polychemotherapy in Metastasized Malignant Melanoma Phase 4