Metabolic Syndrome Clinical Trial
Official title:
Niacin, N-3 Fatty Acids and Insulin Resistance
This research study is being conducted to test the effects of two drugs on blood lipids (cholesterol and triglycerides) and blood sugar (glucose) levels in patients with diabetes or "pre-diabetes" (both of which have a condition called "insulin-resistance"). These products are Niaspan (extended release nicotinic acid) and Omacor (omega-3 acid ethyl esters). We hypothesize that the combination of Niaspan and Omacor will reduce serum triglyceride levels, increase HDL-cholesterol levels and do so without altering glucose levels.
The insulin resistance syndrome (IRS) afflicts approximately 25% of the US adult population. Its principal components include some or all of the following: central obesity, elevated triglyceride levels, decreased high density lipoprotein cholesterol (HDL-C) levels, a preponderance of small, dense low density lipoprotein (LDL) particles, hyperglycemia, hypertension, and increased thrombotic tendency. Subjects with the IRS are at increased risk for type 2 diabetes and/or coronary heart disease (CHD). While lifestyle changes (diet and exercise) often improve many of the manifestations of the IRS, pharmacotherapy is often needed to normalize individual components. In recent studies from our laboratory, niacin and fish oil (n-3 fatty acids, FA) used in combination in insulin resistant individuals led to an expected improved the lipid phenotype (reduced triglycerides, increased HDL-C, and fewer, small, dense LDL particles). What was not expected, however, was that an important marker of adipose tissue insulin resistance - meal-induced suppression of free fatty acid (FFA) flux - would be improved as well. Further, knowing that these agents (given as monotherapy) have been reported to worsen glycemia in diabetic subjects, we were surprised to find no significant deterioration in glycemic control. Further preliminary studies in patients with poorly-controlled type 2 diabetes confirmed the ability of this combination of over-the-counter natural agents to significantly improve the lipid profile without adverse effects on glycemia. Our working hypothesis is that excessive FFA flux from adipose tissue raises serum triglyceride concentrations and leads to other manifestations of the IRS. FFA flux is chronically elevated in insulin resistant subjects due to the insensitivity (i.e., resistance) of their adipocytes to the anti-lipolytic effects of insulin. Released FFA (especially from visceral adipose depots) stimulate hepatic triglyceride synthesis, leading to elevated serum triglyceride levels which subsequently contribute to reduced HDL-C and increased small, dense LDL concentrations. In addition, a high FFA flux can interfere with whole body glucose disposal. If this hypothesis is true, then interventions that improve adipocyte insulin sensitivity may be expected to improve a spectrum of risk factors associated with the insulin resistant state. Since our preliminary studies support this hypothesis, we propose the following four specific aims which will be tested in a 4-arm, randomized, placebo-controlled, double blind trial: Specific Aim 1. To test the hypothesis that n-3 FA and niacin (given singly and in combination) will enhance insulin-mediated suppression of FFA rate of appearance (Ra; a surrogate for adipose tissue insulin sensitivity) in insulin resistant subjects. Specific Aim 2. To test the hypothesis that n-3 FA and niacin (given singly and in combination) will improve insulin sensitivity in insulin resistant subjects. Specific Aim 3. To test the hypothesis that n-3 FA and niacin (given singly and in combination) will reduce VLDL-triglyceride production rates in insulin resistant subjects. Specific Aim 4. To test the hypothesis that n-3 FA and niacin (given singly and in combination) will improve the dyslipidemic profile (i.e., reduce serum triglyceride and small, dense LDL concentrations and elevate HDL-C concentrations) in insulin resistant subjects. At the completion of these studies, we expect to have detailed information on the potential therapeutic efficacy and the kinetic mechanism of action of combined treatment with n-3 FA and niacin. A better understanding of the action of these agents should lead to a clearer appreciation of the relationship between FFA flux and insulin resistance, to more effective therapy for the dyslipidemia of insulin resistance and ultimately to reduced risk for CAD in this burgeoning patient population. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04635202 -
Effect of Elliptical Training on Metabolic Homeostasis in Metabolic Syndrome
|
N/A | |
Completed |
NCT04053686 -
An Intervention to Reduce Prolonged Sitting in Police Staff
|
N/A | |
Completed |
NCT05343858 -
Pilot Study to Evaluate the Effect of Two Microalgae Consumption on Metabolic Syndrome
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Recruiting |
NCT05040958 -
Carotid Atherosclerotic Plaque Load and Neck Circumference
|
||
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Active, not recruiting |
NCT02500147 -
Metformin for Ectopic Fat Deposition and Metabolic Markers in Polycystic Ovary Syndrome (PCOS)
|
Phase 4 | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Completed |
NCT03289897 -
Non-invasive Rapid Assessment of NAFLD Using Magnetic Resonance Imaging With LiverMultiScan
|
N/A | |
Recruiting |
NCT05956886 -
Sleep Chatbot Intervention for Emerging Black/African American Adults
|
N/A | |
Completed |
NCT06057896 -
Effects of Combined Natural Molecules on Metabolic Syndrome in Menopausal Women
|
||
Active, not recruiting |
NCT03613740 -
Effect of Fucoxanthin on the Metabolic Syndrome, Insulin Sensitivity and Insulin Secretion
|
Phase 2 | |
Completed |
NCT04498455 -
Study of a Prebiotic Supplement to Mitigate Excessive Weight Gain Among Physicians in Residency
|
Phase 4 | |
Completed |
NCT05688917 -
Green Coffee Effect on Metabolic Syndrome
|
N/A | |
Completed |
NCT04117802 -
Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome
|
N/A | |
Completed |
NCT03697382 -
Effect of Daily Steps on Fat Metabolism
|
N/A | |
Completed |
NCT03241121 -
Study of Eating Patterns With a Smartphone App and the Effects of Time Restricted Feeding in the Metabolic Syndrome
|
N/A | |
Completed |
NCT04509206 -
Virtual Teaching Kitchen
|
N/A | |
Completed |
NCT05124847 -
TREating Pediatric Obesity
|
N/A |