Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT06180226
Other study ID # MENINGIOMA/RADIOTOSS
Secondary ID
Status Completed
Phase
First received
Last updated
Start date April 21, 2008
Est. completion date December 11, 2014

Study information

Verified date December 2023
Source IRCCS San Raffaele
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The use of radiotherapy for irradiation of all or part of the brain, in the treatment of extracerebral intracranial neoplasms, is growing rapidly, both due to the increase in diagnoses of primary tumors thanks to new imaging methods, and for the increase in the number of new cases of cancer. Cerebral neurotoxicity linked to radiation treatment is an adverse effect that is not always accurately evaluated based on the prognosis of some brain pathologies. The progression of diagnostic and therapeutic methods has recently generated a modification of therapeutic protocols and some categories of radiotreated patients may incur acute, subacute and late effects. These include manifestations of acute neurological deterioration, more frequently effects classified as sub-acute such as "somnolence syndrome" (from 2 to 6 weeks after the end of treatment) and finally late effects, which manifest themselves as a variety of neurological deficits in particular a decline in cognitive brain functions, probably linked to a direct effect on neurons or the result of an imbalance in the connections between white matter and cerebral gray matter. In relation to the myelin function of conduction of axonal transmission, the result of radio-induced damage in this site would manifest itself with a significant reduction in the speed of transmission of the impulse and consequently with a dramatic worsening of cognitive processes. In particular, clinically, radiologically and in some cases also from a pathological point of view, the damage from rays on the brain parenchyma would have aspects similar to those of a degenerative pathology such as Alzheimer's disease. These effects are usually measured on the patient by subjective assessments or using neuropsychological tests. The use, not only experimental, of neurophysiological methods for the study of cognitive processes in neurology and in degenerative disorders such as dementia is increasingly frequent. These methods are based on the study of specific neuronal circuits involved in the cognitive functions of the human brain in normal conditions and in the presence of pathology. Among the techniques that allow an analysis of molecular alterations in vivo there are scintigraphic ones, i.e. nuclear medicine ones, including single photon emission tomography (SPET) and positron emission tomography (PET).


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date December 11, 2014
Est. primary completion date December 11, 2014
Accepts healthy volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - lesion dimensions compatible with a GAmma Knife treatment or tomotherapy; - adequate hematological, hepatic and renal function; - signed informed consent. Exclusion Criteria: - patients < 18 years

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
PET CT with 18 FDG .
Impact exerted by the use of 18FDG PET in the process of functional monitoring of the patient undergoing radiotherapy treatment.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
IRCCS San Raffaele

Outcome

Type Measure Description Time frame Safety issue
Primary PET CT with 18 FDG in adult patients affected by extracerebral intracranial cavernous sinus meningioma. evaluation of the impact of the use of 18 FDG PET in the process of functional monitoring of patients undergoing radiotherapy treatment. 6 years
See also
  Status Clinical Trial Phase
Recruiting NCT04081701 - 68-Ga DOTATATE PET/MRI in the Diagnosis and Management of Somatostatin Receptor Positive CNS Tumors. Phase 4
Recruiting NCT03631953 - Combination of Alpelisib and Trametinib in Progressive Refractory Meningiomas Phase 1
Completed NCT03273712 - Dosimetry-Guided, Peptide Receptor Radiotherapy (PRRT) With 90Y-DOTA- tyr3-Octreotide (90Y-DOTATOC) Phase 2
Recruiting NCT04367779 - Research of Biomarkers of Response to Proton Beam Therapy in Pediatric and Adult Patients.
Withdrawn NCT00985036 - Vascular Endothelial Growth Factor (VEGF) Levels in Brain Tumor Patients N/A
Completed NCT01347307 - Stereotactic Body Radiotherapy for Spine Tumors N/A
Completed NCT01811524 - The Etiology and Progression of Brain Tumors N/A
Completed NCT03648034 - Effects of Scalp Nerve Block With Ropivacaine on Postoperative Recovery Quality N/A
Recruiting NCT06036706 - Neurocognitive Impact of Different Irradiation Modalities for Patients With Grade I-II Skull Base Meningioma: N/A
Recruiting NCT06014905 - Feasibility of Acquiring Hyperpolarized Imaging in Patients With Meningioma Phase 1
Not yet recruiting NCT04386642 - Tranexamic Acid Reduce Blood Loss in Meningioma Resection Phase 4
Active, not recruiting NCT04595786 - The Safety of Intravenous Tranexamic Acid in Patients Undergoing Supratentorial Meningiomas Resection N/A
Completed NCT04305470 - Gleolan for Visualization of Newly Diagnosed or Recurrent Meningioma Phase 3
Completed NCT01967823 - T Cell Receptor Immunotherapy Targeting NY-ESO-1 for Patients With NY-ESO-1 Expressing Cancer Phase 2
Not yet recruiting NCT02978677 - Proton Dose Escalation for Patients With Atypical or Anaplastic Meningiomas N/A
Active, not recruiting NCT02933736 - Ribociclib (LEE011) in Preoperative Glioma and Meningioma Patients Early Phase 1
Completed NCT02267928 - Information Presentation Formats N/A
Completed NCT00589784 - Phase II Trial of Sunitinib (SU011248) in Patients With Recurrent or Inoperable Meningioma Phase 2
Active, not recruiting NCT03071874 - Vistusertib (AZD2014) For Recurrent Grade II-III Meningiomas Phase 2
Recruiting NCT05416567 - Embolization for Meningioma N/A