Clinical Trials Logo

Clinical Trial Summary

Pressure support ventilation (PSV) is an assisted mechanical ventilation mode that provides synchronous inspiratory support for patients with spontaneous breathing. PSV divides the work involved in producing ventilation between the ventilator and the patients. The patient inspiratory effort needs close monitoring to avoid inappropriate assistance and maintain favorable patient-ventilator interaction during PSV. Esophageal pressure (Pes)-derived parameters are regarded as golden indicators of inspiratory effort. Based on this precondition, the fraction of PTP generated by the patient during PSV (PTP ratio) can evaluate the inspiratory contribution proportion of ventilated patients with spontaneous breathing. Inspiratory muscle pressure index (PMI) was confirmed to be associated with inspiratory effort and can effectively predict low/high effort. The study tries to explore the relationship between PMI and PTP ratio and find the optimal cut-off value of PMI to predict different PTP ratios. Second, investigators want to verify the safety and validity of PMI-guided PS settings for pressure-support ventilated patients.


Clinical Trial Description

Pressure support ventilation (PSV) is an assisted mechanical ventilation mode that provides synchronous inspiratory support for patients with spontaneous breathing. PSV divides the work involved in producing ventilation between the ventilator and the patients. The level of support should be adjusted to the patient's inspiratory effort for assisted ventilation to be successful. Despite PSV being commonly used in mechanical ventilation therapy, the PS setting is not precisely regulated. Clinicians and respiratory therapists typically use tidal volume/predicted body weight (VT/PBW, 6-8 ml/Kg) and respiratory rate (RR, 20-30 breaths/min) to modify ventilator settings. Because pressure support level is not dynamically modulated based on the inspiratory effort of ventilated patients in time, there is always the risk of excessive or insufficient assistance. Excessive assistance and low inspiratory effort may result in diaphragm disuse atrophy and ventilator-induced lung injury (VILI). Inadequate assistance and high inspiratory effort may result in diagram stretched injury and patient-inflicted lung injury (PSILI). Both situations cause strain and stress on the lung and diaphragm, which may influence the ICU clinical outcomes. The patient inspiratory effort needs close monitoring to avoid inappropriate assistance and maintain favorable patient-ventilator interaction during PSV. Esophageal pressure (Pes)-derived parameters are regarded as golden indicators of inspiratory effort, including respiratory muscle pressure (Pmus), esophageal pressure-time product (PTPes), etc. Based on this precondition, the fraction of PTP generated by the patient during PSV (PTP ratio) can evaluate the inspiratory contribution proportion of ventilated patients with spontaneous breathing. Pmus index (PMI) is defined as the change in airway pressure (Paw) during the end-inspiratory occlusion and represents the patient's current elastic workload. This variable was confirmed to be associated with inspiratory effort and can effectively predict low/high effort. More importantly, it is non-invasive and available at the bedside because respiratory hold operations are integrated into most ventilators. However, the relationship between PMI and the inspiratory contribution proportion of ventilated patients is not clear, and how to guide PS settings through PMI needs more research. Our study aims to explore the inspiratory contribution of pressure-support ventilated patients in different PMI conditions. In other words, investigators try to explore the relationship between PMI and PTP ratio and find the optimal cut-off value of PMI to predict different PTP ratios. Second, investigators want to verify the safety and validity of PMI-guided PS settings for pressure-support ventilated patients. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05970393
Study type Interventional
Source Capital Medical University
Contact Jian-Xin Zhou, MD
Phone 8610 63926888
Email zhoujx.cn@icloud.com
Status Recruiting
Phase N/A
Start date February 7, 2023
Completion date August 7, 2023

See also
  Status Clinical Trial Phase
Completed NCT05921656 - Construction and Evaluation of Airway Leakage Risk Model of Patients With Endotracheal Tube
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Withdrawn NCT04288076 - The Brain and Lung Interaction (BALI) Study N/A
Completed NCT03031860 - Semi-quantitative Cough Strength Score (SCSS) N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT02312869 - Local Assessment of Management of Burn Patients N/A
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT01204281 - Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients Phase 4
Terminated NCT01059929 - Dexmedetomidine Versus Propofol in the Medical Intensive Care Unit (MICU) Phase 4
Completed NCT00824239 - Intermittent Sedation Versus Daily Interruption of Sedation in Mechanically Ventilated Patients Phase 3
Completed NCT00529347 - Mechanical Ventilation Controlled by the Electrical Activity of the Patient's Diaphragm - Effects of Changes in Ventilator Parameters on Breathing Pattern Phase 1
Unknown status NCT00260676 - Protective Ventilatory Strategy in Potential Organ Donors Phase 3
Terminated NCT00205517 - Sedation and Psychopharmacology in Critical Care N/A
Completed NCT03281785 - Ultrasound of Diaphragmatic Musculature in Mechanically Ventilated Patients. N/A
Recruiting NCT04110613 - RCT: Early Feeding After PEG Placement N/A
Completed NCT04410783 - The Emergency Department Sedation Pilot Trial N/A
Recruiting NCT04821453 - NAVA vs. CMV Crossover in Severe BPD N/A
Completed NCT03930147 - Ventilation With ASV Mode in Children N/A
Recruiting NCT05029167 - REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study) N/A
Recruiting NCT04849039 - Lung Microbiota and VAP Development (PULMIVAP)