Clinical Trials Logo

Clinical Trial Summary

Sepsis leads to a deregulated host response that can lead to organ failure. During sepsis, experimental and clinical data suggest the occurrence of mitochondrial dysfunctions, particularly in circulating muscle and monocytes, which may contribute to organ failure and death. Lower respiratory infection is the leading cause of death from infectious causes. Mechanical ventilation (MV) is required in 20% of cases of bacterial pneumopathy with Streptococcus pneumoniae (S.p.) , with mortality reaching 50%. There are then frequently criteria for acute respiratory distress syndrome (ARDS), combining bilateral lung involvement and marked hypoxemia. Cyclic stretching of lung cells induced by MV causes sterile inflammation and tissue damage (i.e. ventilator-induced lung injury [VILI]), which can cause cellular dysfunction that alter the immune response, particularly during ARDS. This is why the application of a so-called protective MV is then required. However, this does not prevent about one-third of patients from showing signs of alveolar overdistension, as evidenced by an increase in motor pressure (MP) (MP≥ 15 cmH2O), associated with an increase in mortality. The deleterious effects of MV could be explained by the occurrence of mitochondrial abnormalities. Indeed, the cyclic stretching of lung cells leads to dysfunction in the respiratory chain and the production of free oxygen radicals (FOS), altering membrane permeability. These phenomena could promote VILI, facilitate the translocation of bacteria from the lung to the systemic compartment and lead to alterations in immune response. In our model of S.p. pneumopathy in rabbits, animals on MV develop more severe lung disorders (lack of pulmonary clearance of bacteria, bacterial translocation in the blood, excess mortality), compared to animals on spontaneous ventilation (SV). Intracellular pulmonary mitochondrial DNA (mtDNA) concentrations, a reflection of the mitochondrial pool, are significantly decreased in ventilated rabbits compared to SV rabbits and in infected rabbits compared to uninfected rabbits. At the same time, the mitochondrial content of circulating cells decreased early (H8) in all infected rabbits, but was only restored in rabbits in SV, those who survived pneumonia (Blot et al, poster ECCMID 2015, submitted article). These data suggest an alteration in the mechanisms that restore mitochondrial homeostasis (mitochondrial biogenesis and mitophagy) during the dual infection/MV agression, which may explain the observed excess mortality. Other work by our team illustrates the importance of these phenomena by showing in a mouse model of polymicrobial infection that inhibition of mitophagia in macrophages promotes survival (Patoli et al, in preparation). Human data on this subject are non-existent. The phenomena of mitochondrial dysfunction nevertheless deserve to be explored in humans during the combined MV/pneumopathy aggression in order to understand its possible impact on the effectiveness of the host's immune response. In a personalized medicine approach, these data would open up prospects for targeted therapies, capable of activating mitochondrial biogenesis and/or modulating mitophagia, to prevent organ dysfunction and mortality during severe CALs treated with antibiotic therapy.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03955887
Study type Observational
Source Centre Hospitalier Universitaire Dijon
Contact
Status Terminated
Phase
Start date June 11, 2019
Completion date May 7, 2020

See also
  Status Clinical Trial Phase
Completed NCT05563701 - Evaluation of the LVivo Image Quality Scoring (IQS)
Completed NCT04908397 - Carnitine Consumption and Augmentation in Pulmonary Arterial Hypertension Phase 1
Terminated NCT03309358 - A Study of the Safety and Tolerability of Inhaled SNSP113 in Healthy Subjects and Subjects With Stable Cystic Fibrosis Phase 1
Completed NCT03682354 - ESPB Versus INB With PCIA in Video-assisted Thoracic Surgery N/A
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Completed NCT03626519 - Effects of Menthol on Dyspnoea in COPD Patients N/A
Recruiting NCT06004440 - Real World Registry for Use of the Ion Endoluminal System
Completed NCT04874948 - Absorption, Elimination and Safety of 14C-labeled Radioactive BTZ-043, a New Compound in TB Treatment Phase 1
Completed NCT02926768 - Phase I/II Study of CK-101 in NSCLC Patients and Other Advanced Solid Tumors Phase 1
Completed NCT01443845 - Roflumilast in Chronic Obstructive Pulmonary Disease (COPD) Patients Treated With Fixed Dose Combinations of Long-acting β2-agonist (LABA) and Inhaled Corticosteroid (ICS) Phase 4
Completed NCT00269256 - Stress, Environment, and Genetics in Urban Children With Asthma N/A
Terminated NCT00233207 - IC14 Antibodies to Treat Individuals With Acute Lung Injury Phase 2
Completed NCT00281216 - Innate and Adaptive Immunity in Individuals Experiencing Chronic Obstructive Pulmonary Disease Exacerbations N/A
Recruiting NCT00129350 - Assessment of Heart and Heart-Lung Transplant Patient Outcomes Following Pulmonary Rehabilitation Phase 1
Active, not recruiting NCT00115297 - Montelukast for Early Life Wheezing Phase 2/Phase 3
Completed NCT00091767 - Genetic Studies in Difficult to Treat Asthma: TENOR N/A
Completed NCT00094276 - Intervention for Improving Asthma Care for Minority Children in Head Start N/A
Completed NCT00233168 - Effectiveness of Public Health Model of Latent Tuberculosis Infection Control for High-Risk Adolescents N/A
Completed NCT00083798 - Family Linkage Study of Obstructive Sleep Apnea (OSA) in Iceland N/A
Completed NCT00069823 - Study of Acid Reflux in Asthma Phase 3