Clinical Trials Logo

Clinical Trial Summary

A research study to learn about the biologic features of cancer development, growth, and spread. We are studying components of blood, tumor tissue, normal tissue, and other fluids, such as urine, cerebrospinal fluid, abdominal or chest fluid in patients with cancer. Our analyses of blood, tissue, and/or fluids may lead to improved diagnosis and treatment of cancer by the identification of markers that predict clinical outcome, markers that predict response to specific therapies, and the identification of targets for new therapies.


Clinical Trial Description

In the United States, an estimated 222,520 lung and bronchus cancers will be diagnosed in 2010, and 157,300 people will die of this disease. Therefore, there is an urgent need for safer and more effective therapies for lung cancer.1 Lung cancer falls into two major classifications, non-small cell lung cancer (NSCLC) which accounts for approximately 87%, and small cell lung cancer (SCLC), which accounts for the remainder. Thymomas are the most common tumors of the anterior mediastinum, and typically occur in adults older than 40 years. While surgical resection and radiation often effectively treat these tumors, a minority continue to progress and eventually lead to death. Thymic carcinomas are a related subset of tumors that more often metastasize and are more aggressive. Finally, mesothelioma often behaves as aggressively as lung cancer, and is not frequently amenable to curative resection. While the role of molecular alterations has yet to be defined in the treatment of SCLC, thymoma, and mesothelioma, there is an increasing recognition that molecular alterations in NSCLC are important predictors of response to novel targeted therapies. Small molecule tyrosine kinase inhibitors (TKI) of the epidermal growth factor receptor (EGFR) signaling pathway, such as erlotinib and gefitinib, improve survival in the second-line treatment of unselected patients with NSCLC. However, retrospective subgroup analysis of these clinical trials has revealed that patients with particular clinical features were more likely to benefit from therapy, such as those with tumors of adenocarcinoma histology, women, Asian ethnicity, and light or never smokers. Conventional Deoxyribonucleic acid (DNA) sequencing of tumors from multiple series of patients that had dramatic responses to gefitinib, as compared with patients without responses, revealed the presence of characteristic genetic mutations in the EGFR gene.4-6 The previously identified clinical markers of response to EGFR TKIs were found to be commonly associated with the presence of these mutations; thus, these clinical features are actually believed to be surrogates for the molecular biomarker of EGFR mutation. Over 90% of EGFR tyrosine kinase domain mutations associated with sensitivity to EGFR Tyrosine kinase inhibitor (TKI) therapy fall into two categories, in-frame deletions in exon 19, and the L858R point mutation in exon 21. These mutations appear to specifically activate both cell proliferation, via activation of the MAP kinase pathway, and survival signals, via activation of the PI3 kinase pathway.7 Therefore, tumors with EGFR mutations are "oncogene addicted" to EGFR survival signals, relying exclusively upon the EGFR signaling cascade to maintain viability, which explains their exquisite sensitivity to TKI therapy. A number of recent large randomized studies have conclusively demonstrated that clinical selection of patients alone is inadequate, and instead establish EGFR mutation status as the single most important predictive marker of response to EGFR-TKI therapy.8-10 In another emerging but similar story, genetic fusion of the anaplastic lymphoma kinase (ALK) tyrosine kinase to a partner protein, EML4, appears to strongly predict sensitivity to the ALK TKI, crizotinib. 11 In addition, there is evidence that less common mutations in NSCLC, such as BRAF mutations and ERBB2 (e.g. HER2) mutations, may also predict response to targeted therapies. In summary, identification of genetic alterations in NSCLC is increasingly essential for individualizing treatments and performing molecular diagnostics. While the investigators do not anticipate benefits to individual patients, identification of molecular alterations in small cell lung cancer, thymic malignancies, and mesothelioma may provide similar keys to the utilization of novel therapies. This project aims to create a registry of patients and tumors to further the characterization of molecular alterations in thoracic malignancies and develop markers of early detection. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01385722
Study type Observational
Source Stanford University
Contact
Status Enrolling by invitation
Phase
Start date August 2011
Completion date June 2031

See also
  Status Clinical Trial Phase
Completed NCT03918538 - A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors N/A
Recruiting NCT05078918 - Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors N/A
Active, not recruiting NCT04548830 - Safety of Lung Cryobiopsy in People With Cancer Phase 2
Completed NCT04633850 - Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT05583916 - Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery N/A
Active, not recruiting NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Not yet recruiting NCT06376253 - A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers Phase 1
Recruiting NCT05898594 - Lung Cancer Screening in High-risk Black Women N/A
Recruiting NCT05060432 - Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT03667716 - COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors. Phase 1
Active, not recruiting NCT03575793 - A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer Phase 1/Phase 2
Terminated NCT01624090 - Mithramycin for Lung, Esophagus, and Other Chest Cancers Phase 2
Terminated NCT03275688 - NanoSpectrometer Biomarker Discovery and Confirmation Study
Not yet recruiting NCT04931420 - Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels Phase 2
Recruiting NCT06010862 - Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors Phase 1
Recruiting NCT06052449 - Assessing Social Determinants of Health to Increase Cancer Screening N/A
Not yet recruiting NCT06017271 - Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
Recruiting NCT05787522 - Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk