Clinical Trials Logo

locked-in Syndrome clinical trials

View clinical trials related to locked-in Syndrome.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT06207591 Recruiting - Clinical trials for Traumatic Brain Injury

Investigation on the Cortical Communication System

CortiCom
Start date: December 15, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to demonstrate communication through a brain implant in people in locked-in state, i.e. people with severe paralysis and communication problems. The main questions it aims to answer are efficient and stable control of Brain-Computer interface (BCI) functions for communication with attempted hand movements and operation of a keyword-based speech BCI. Participants will be implanted with four electrode grids, with in total 128 electrodes, on the surface of the brain and a connector on the skull. Participation includes visits of researchers for recording and training at home, 2-3 times per week for one year. Extension of participation after one year is possible. If successful, the participant will be able to use the BCI at home independently, without the presence of a researcher.

NCT ID: NCT06094205 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia (BG-Speech-02)

BG-Speech-02
Start date: October 2024
Phase: N/A
Study type: Interventional

The goal of this study is to improve our understanding of speech production, and to translate this into medical devices called intracortical brain-computer interfaces (iBCIs) that will enable people who have lost the ability to speak fluently to communicate via a computer just by trying to speak.

NCT ID: NCT05724173 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia

BG-Speech-01
Start date: October 18, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.

NCT ID: NCT05348902 Recruiting - Clinical trials for Locked-In Syndrome;Pulmonary Arteriovenous Malformation

Locked-in Syndrome Caused by Pulmonary Arteriovenous Malformation: A Case Report

Start date: October 1, 2021
Phase:
Study type: Observational

In this case, we report a case of atresia syndrome (LIS), a serious neurological disease caused by pulmonary arteriovenous fistula (PAVM). We present a previously healthy middle-aged woman who developed atresia syndrome after severe pontine infarction due to basilar artery occlusion due to undiagnosed arteriovenous malformation. This report reviewed the medical history, post-admission examination and related literature, and concluded that PAVM should be considered as the cause of implicit stroke, especially in young patients with right-to-left shunt, and should be actively treated.

NCT ID: NCT04468919 Recruiting - Clinical trials for Spinal Cord Injuries

Optimizing BCI-FIT: Brain Computer Interface - Functional Implementation Toolkit

BCI-FIT
Start date: July 15, 2022
Phase: N/A
Study type: Interventional

This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize & adapt BCI signal acquisition, signal processing, natural language processing, & clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop & evaluate methods for on-line & robust adaptation of multi-modal signal models to infer user intent; 2. develop & evaluate methods for efficient user intent inference through active querying, and 3. integrate partner & environment-supported language interaction & letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), & user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), & active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.

NCT ID: NCT03567213 Recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

Investigation on the Cortical Communication (CortiCom) System

CortiCom
Start date: December 14, 2021
Phase: N/A
Study type: Interventional

The CortiCom system consists of 510(k)-cleared components: platinum PMT subdural cortical electrode grids, a Blackrock Microsystems patient pedestal, and an external NeuroPort Neural Signal Processor. Up to two grids will be implanted in the brain, for a total channel count of up to 128 channels, for six months. In each participant, the grid(s) will be implanted over areas of cortex that encode speech and upper extremity movement.

NCT ID: NCT00912041 Recruiting - Clinical trials for Spinal Cord Injuries

BrainGate2: Feasibility Study of an Intracortical Neural Interface System for Persons With Tetraplegia

BrainGate2
Start date: May 2009
Phase: N/A
Study type: Interventional

The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.