Clinical Trials Logo

Juvenile Myelomonocytic Leukemia clinical trials

View clinical trials related to Juvenile Myelomonocytic Leukemia.

Filter by:

NCT ID: NCT00669890 Terminated - Clinical trials for Acute Myeloid Leukemia

Allogenic Stem Cell Transplantation in Patients With High Risk CD33+ AML/MDS/JMML

High Risk
Start date: May 2004
Phase: Phase 1
Study type: Interventional

The addition of gemtuzumab ozogamicin (GO) in combination with Busulfan/Cyclophosphamide followed by AlloSCT in patients with high risk CD33+ AML/JMML/MDS will be safe and well tolerated. This study will attempt to determine the maximum tolerated dose of the immune therapy (gemtuzumab) when given in combination with the myeloablative (high dose) drugs used in this study for allogeneic stem cell transplant. (Part A)

NCT ID: NCT00662090 Active, not recruiting - Clinical trials for Myelodysplastic Syndromes

Study for Epidemiology and Characterization of Myelodysplastic Syndromes (MDS) and Juvenile Myelomonocytic Leucemia (JMML) in Childhood

EWOG MDS 2006
Start date: January 2006
Phase:
Study type: Observational

The aim of the study is to improve the accuracy of diagnosis for children and adolescents with MDS by a standardized review of morphology and standardized cytogenetic and molecular analysis. The primary objectives of the study are: - To evaluate the frequency of the different subtypes of MDS in childhood and adolescence by a standardized diagnostic approach - To evaluate the frequency of cytogenetic and molecular abnormalities: Specifically using array-CGH to evaluate the frequency of subtle chromosomal imbalances, i.e. gains and losses of defined chromosomal regions, and amplifications. Specifically using mFISH to identify unknown chromosomal aberrations, particularly subtle translocations involving new candidate genes, and to better define chromosomal breakpoints. The secondary objectives of the study are: - To assess survival for children and adolescents with MDS and JMML - To evaluate relapse rate, morbidity and mortality in children with MDS and JMML treated by HSCT

NCT ID: NCT00489203 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

Start date: April 2007
Phase: Phase 2
Study type: Interventional

RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.

NCT ID: NCT00450450 Completed - Clinical trials for Previously Treated Myelodysplastic Syndromes

Donor Bone Marrow Transplant With or Without G-CSF in Treating Young Patients With Hematologic Cancer or Other Diseases

Start date: December 31, 2007
Phase: Phase 3
Study type: Interventional

This randomized phase III trial is studying donor bone marrow transplant with or without G-CSF to compare how well they work in treating young patients with hematologic cancer or other diseases. Giving chemotherapy and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate and tacrolimus or cyclosporine before and after transplant may stop this from happening. It is not yet known whether donor bone marrow transplant is more effective with or without G-CSF in treating hematologic cancer or other diseases.

NCT ID: NCT00408681 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease After Donor Stem Cell Transplant

Start date: June 2006
Phase: N/A
Study type: Interventional

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.

NCT ID: NCT00309907 Completed - Clinical trials for Secondary Acute Myeloid Leukemia

Etanercept in Treating Young Patients With Idiopathic Pneumonia Syndrome After Undergoing a Donor Stem Cell Transplant

Start date: April 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well etanercept works in treating young patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant. Etanercept may be effective in treating patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant.

NCT ID: NCT00217412 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory Solid Tumors, Lymphoma, or Leukemia

Start date: August 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.

NCT ID: NCT00167219 Completed - Clinical trials for Juvenile Myelomonocytic Leukemia

Stem Cell Transplant for Juvenile Myelomonocytic Leukemia (JMML)

Start date: November 18, 1999
Phase: Phase 1/Phase 2
Study type: Interventional

The investigators hypothesize that long-term disease-free survival (DFS) in patients with JMML can be achieved with a treatment of busulfan (BU), cyclophosphamide (CY) and melphalan (L-PAM) followed by hematopoietic cell transplantation (HCT).

NCT ID: NCT00152139 Completed - Clinical trials for Myelodysplastic Syndrome

Stem Cell Transplantation for Patients With Hematologic Malignancies

Start date: May 2002
Phase: Phase 3
Study type: Interventional

Childhood leukemias which cannot be cured by chemotherapy alone may be effectively treated by allogeneic bone marrow transplantation. Moreover, for patients with chronic myelogenous leukemia (CML), allogeneic hematopoietic stem cell transplantation (HSCT) is the only proven curative modality of treatment. Patients who have received hematopoietic stem cells from an HLA matched sibling donor have proven to be less at risk for disease relapse and regimen related toxicity. However, about 70% of patients in need of HSCT do not have an HLA matched sibling donor. This necessitates the search for alternative donors, which may increase the risk of a poor outcome. The nature of the hematopoietic stem cell graft has been implicated as a primary factor determining these outcomes. The standard stem cell graft has been unmanipulated bone marrow, but recently several advantages of T-lymphocyte depleted bone marrow and mobilized peripheral blood progenitor cells (PBPC) have been demonstrated. However, T-cell depletion may increase the risk of infectious complications and leukemic recurrence while an unmanipulated stem cell graft may increase the risk of graft vs. host disease (GVHD). A key element in long range strategies in improving outcomes for patients undergoing matched unrelated donor (MUD) HSCT is to provide the optimal graft. The primary objective of this clinical trial is to estimate the incidence of acute GVHD in pediatric patients with hematologic malignancies who receive HSCT with an unmanipulated marrow graft. The results of this study can be used as the foundation for future trials related to engineering unrelated donor graft.

NCT ID: NCT00143559 Completed - Leukemia Clinical Trials

Stem Cell Transplantation as Immunotherapy for Hematologic Malignancies

Start date: August 2005
Phase: Phase 2
Study type: Interventional

Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. Two groups of patients were enrolled on this study. One group included those with high-risk hematologic malignancies and the second group included participants with refractory hematologic malignancies or undergoing a second transplant. The primary aim of the study was to estimate the relapse rate in the one group of research participants with refractory hematologic malignancies or those undergoing second allogeneic transplant. Both groups will be followed and analyzed separately in regards to the secondary objectives. This study was closed to accrual on April 2006 as it met the specific safety stopping rules regarding occurrence of severe graft vs. host disease. Although this study is no longer open to accrual, the treated participants continue to be followed as directed by the protocol.