Clinical Trials Logo

Clinical Trial Summary

Viruses are a major health problem for the general public and at risk populations. Normally, detection of antibody titers is the gold standard for determining the effectiveness of the immune system following natural or vaccine caused immunization. However, determining the effectiveness of other parts of the immune system are less common due to the difficulties with testing. Furthermore, there is a critical need to address other therapies in case vaccination is not successful in immuncompromised populations. Exercise has been shown to increase the strength of the immune system against many types of viruses and therefore could be simple way to improve immunity against the COVID-19 virus. The aim of this research is to determine the effects of exercise on anti-viral immunity against many types of common viruses before and after vaccination. We hypothesize that exercise will enhance the anti-viral immunity before and after vaccination. Up to 30 healthy volunteers (age 18-44 years) will be recruited to participate in this study. For completion of Aim 1, three visits are needed totaling around 7 hours of the patient's time and for Aim 2, three visits are needed totaling around 4.5 hours of the patient's time. The initial visit will be for pre-screening and if deemed healthy enough to participate, an exercise test to determine the VO2 max of the participant will be conducted. The following visits will require a trained phlebotomist to insert an in-dwelling catheter and participants will undergo a 20-minute incremental exercise trial. Approximately 50mL of blood will be collected at four different timepoints: at rest, 60% VO2 max, 80% VO2 max, and 1-hr post-exercise. All four collected blood samples will be used to expand viral specific T-cells and compare IFN-γ rele


Clinical Trial Description

Acute upper and lower respiratory tract infections (RTI) due to respiratory viruses, such as, respiratory syncytial virus (RSV), influenza, parainfluenza virus (PIV) and human metapneumovirus (hMPV) are a major public health problem. During the 2019-2020 influenza season, the Center for Disease Control (CDC) determined that influenza accounted for 38 million illnesses, 18 million medical visits, 405,000 hospitalizations, and 22,00 deaths, and annual costs of approximately 87.1 billion in disease management in the United States. Simultaneously, the COVID 19 pandemic is currently a major health crisis across of the United States and worldwide with the number of cases surpassing 50 million and deaths totaling more than 1.3 million. Latent herpesviruses (cytomegalovirus (CMV), Epstein Barr virus (EBV), and Varicella Zoster virus (VZV)) are other types of viral infections that are easily controlled in healthy people but in immunocompromised people, such as elderly or cancer patients, these latent viruses can become deadly. People receiving allogenic hematopoietic cell transplantation (allo-HCT) are at high risk of CMV infection and can lead to significant morbidity in transplant patients. Due to these populations. An acute bout of exercise, as well as, chronic exercise training, have been shown to enhance anti-viral immunity against many of these respiratory viruses and latent herpesviruses. However, the immune response to viral infections is usually limited to the detection of humoral responses and the ability to produce antibodies titers is the gold standard for determining the effectiveness of the immune system in response to vaccination. However, monitoring the cellular immune response following natural or vaccine induced immunization less standardized. Numerous laboratory techniques have been developed to test the cellular immune response including, phenotyping antigen specific T-cells, intracellular staining of cytokines, ELISPOT or ELISA for antigen derived cytokine production, and antigen specific cytotoxicity assays. However, theses assays are laborious and typically require highly specialized lab equipment and techniques. Interferon-gamma (IFN-γ) release assays have been developed to focus on cellular immunity and could complement or replace these other laborious procedures. Thus we propose that a single bout of exercise in humans will enhance the total antiviral immunity to numerous respiratory viruses and latent herpesviruses, using a whole blood IFN-γ assay. Secondly, there is a critical need to develop new therapeutics that can be used both prophylactically and in the treatment of SARS CoV-2 infections. Adoptive cell therapy with viral specific T-cells (VST) has been used effectively to treat viral infections in immunocompromised patients, particularly in recipients of hematopoietic stem cell transplantation. This procedure has been used for >25 years with evidence of safety and efficacy. No group to our knowledge has attempted to manufacture SARS CoV-2 VSTs as a potential therapeutic to prevent and/or treat refractory SARS Co-V-2 infections during the current COVID-19 pandemic. Having a personalized or 'third-party' T-cell product that is 'banked' and readily available could offer a life-saving intervention for many 'at-risk' individuals (e.g. the elderly, cancer patients, diabetics, transplant recipients) should they develop COVID-19. Current COVID-19 vaccination strategies are focused on inducing neutralizing antibodies. This strain-specific approach is limited because immunity against drifted strains that emerge from one season to the next, or even during a single season, is often lost. Given that T-cells offer protection against multiple viral strains, there is strong rationale to develop a vaccine that targets T-cells capable of providing coronavirus heterotypic immunity. Dendritic Cell (DC) vaccines pulsed with viral antigen peptides have been used successfully to elicit immune responses against influenza, hepatitis C and HIV and could, therefore, serve as a personalized vaccine solution to the COVID-19 pandemic. In the present study, we plan to demonstrate preclinical proof of concept for a DC based vaccine by attempting to immunize "humanized" mice in vivo. Our proposed NOD-scid-IL2Rγnull (NSG) mouse model has been used successfully to generate preclinical data for human DC and VST based vaccines. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05019456
Study type Interventional
Source University of Arizona
Contact Richard J Simpson, PhD
Phone 520-621-4108
Email rjsimpson@arizona.edu
Status Recruiting
Phase N/A
Start date March 9, 2021
Completion date December 25, 2022

See also
  Status Clinical Trial Phase
Completed NCT05523089 - The Effectiveness of CD388 to Prevent Flu in an Influenza Challenge Model in Healthy Adults Phase 2
Completed NCT05009251 - Using Explainable AI Risk Predictions to Nudge Influenza Vaccine Uptake N/A
Completed NCT03282240 - Safety and Immunogenicity of High-Dose Quadrivalent Influenza Vaccine in Participants ≥65 Years in the US Phase 3
Completed NCT00968526 - Study to Evaluate Immunogenicity and Safety of an Investigational Influenza Vaccine (H1N1) in Adults Phase 3
Completed NCT00968539 - Study to Evaluate the Immunogenicity & Safety of an Investigational Influenza Vaccine (H1N1) in Adults Phase 3
Completed NCT00971425 - Evaluation of the Immune Response and the Safety of a Pandemic Influenza Candidate Vaccine (H1N1) Phase 3
Completed NCT05525494 - Patient Portal Flu Vaccine Reminders (5) N/A
Completed NCT04074928 - Safety and Immunogenicity Study of QIVc in Healthy Pediatric Subjects Phase 3
Completed NCT04695717 - This Study Was Conducted to Evaluate the Safety and Immunogenicity of IVACFLU-S Produced in Children From 6 Months to Under 18 Years Old and the Elderly Over 60 Years Old in Vietnam Phase 3
Completed NCT05012163 - Lottery Incentive Nudges to Increase Influenza Vaccinations N/A
Completed NCT04109222 - Collection of Serum Samples From Children and Older Adults Receiving the 2019-2020 Formulations of Fluzone® Quadrivalent and Fluzone® High-Dose Influenza Vaccines, Respectively Phase 4
Completed NCT03888989 - Response to Influenza Vaccine During Pregnancy Phase 1
Completed NCT02587221 - Clinical Study to Evaluate the Efficacy, Safety and Immunogenicity of an MF59-Adjuvanted Quadrivalent Influenza Vaccine Compared to Non-influenza Vaccine Comparator in Adults ≥ 65 Years of Age Phase 3
Completed NCT03453801 - The Role of CD4+ Memory Phenotype, Memory, and Effector T Cells in Vaccination and Infection Phase 1
Completed NCT01440387 - A Study of Immunogenicity and Safety of GSK Biologicals' Influenza Vaccine FLU-Q-QIV in Adults Aged 18 Years and Older Phase 3
Terminated NCT01195779 - Trial to Evaluate Safety and Immunogenicity of GSK Biologicals' Influenza Vaccine GSK2584786A in Healthy Children Phase 2
Completed NCT03321968 - Lot-to-lot Consistency of a Plant-Derived Quadrivalent Virus-Like Particles Influenza Vaccine in Healthy Adults Phase 3
Completed NCT00972517 - Study to Evaluate the Immunogenicity and Safety of an Investigational Influenza Vaccine (H1N1) in Children Phase 3
Completed NCT04570904 - Broadening Our Understanding of Early Versus Late Influenza Vaccine Effectiveness
Recruiting NCT03331991 - Prevention of Influenza and Other Wintertime Respiratory Viruses Among Healthcare Professionals in Israel N/A