Clinical Trials Logo

Clinical Trial Summary

This is an open label phase I study, to assess the safety of a novel influenza vaccine, MVA-NP+M1. All volunteers recruited will be healthy. Twelve volunteers will be administered with a single dose of 5 x 10^7 pfu of MVA-NP+M1 via the Intradermal (ID) route (group 1). Sixteen volunteers will receive Intramuscular (IM) MVA-NP+M1. The first 8 volunteers will be administered a single dose of 5 x 10^7 pfu of MVA-NP+M1 followed by a further eight receiving 2.5 x 10^8 pfu of MVA-NP+M1 (group 2). The 3rd group will be split into 3 groups of 10 volunteers in the age ranges 50-59, 60-69 and 70 and above and administered intramuscularly with a single dose of 1.5 x 10^8 pfu of MVA-NP+M1. Safety data will be collected. The secondary aim of this study will be to assess the cellular immune responses generated by each dose.


Clinical Trial Description

Antibodies against the external proteins of influenza can prevent the virus from infecting cells and either prevent infection or limit the spread of infection. However the surface proteins are highly variable and there is little antibody cross-reactivity between variants. Once a cell has been infected with the virus, it is then vulnerable to T cell attack resulting in the destruction of infected cells so that no more virus can be produced and the infection is controlled. There is evidence from clinical trials of influenza challenge, and animal models that T cell responses can protect in the absence of antibodies. Additionally, since T cells can recognise the highly conserved internal proteins of influenza, cross-subtype protection can be achieved.

Seasonal influenza infection results in a T cell response to the virus which can protect against subsequent infection. However over the course of a few years these responses decline below protective levels. The new vaccine being tested in this study is designed to boost these T cell responses back to protective levels. Even responses that may be too low to be reliably quantified by currently available assays may still be boosted to high levels by a single dose of recombinant MVA. Since the internal proteins vary little between influenza subtypes, this could result in a 'universal' vaccine against influenza A. If the need to continually reformulate the vaccine in response to mutations in the viral coat proteins can be removed, the universal vaccine could be produced in large amounts and used more widely than the existing seasonal 'flu vaccines, thus protecting the population against currently circulating viruses and new virus types that are at present only found in avian species.

There is very little polymorphism of NP and M1 between influenza A isolates. NP is 92% identical between H3N2 and H1N1 strains, and 91% identical between H3N2 and H5N1 strains. M1 is 95% identical between H3N2 and H1N1 strains, and 93% identical between H3N2 and H5N1 strains. This low level of variation appears to allow strong T cell cross-reactivity.

MVA is a highly attenuated strain of vaccinia virus that is unable to replicate efficiently in human cell lines and most mammalian cells. Viral replication is blocked at a late stage of virion assembly, so, importantly, viral and recombinant protein synthesis is unimpaired. This means that MVA is an efficient single round expression vector, incapable of causing infection in mammals. Replication-deficient recombinant MVA has been seen as an exceptionally safe viral vector. This safety in man is consistent with the avirulence of MVA in animal models, where recombinant MVAs have also been shown to be protectively immunogenic as vaccines against viral diseases and cancer. Importantly for a vaccine which may eventually be used in a large proportion of the population, recombinant MVAs expressing HIV antigens have been shown to be safe and immunogenic in HIV-infected subjects. ;


Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Prevention


Related Conditions & MeSH terms


NCT number NCT00942071
Study type Interventional
Source University of Oxford
Contact
Status Completed
Phase Phase 1
Start date August 2008
Completion date November 2012

See also
  Status Clinical Trial Phase
Completed NCT05523089 - The Effectiveness of CD388 to Prevent Flu in an Influenza Challenge Model in Healthy Adults Phase 2
Completed NCT05009251 - Using Explainable AI Risk Predictions to Nudge Influenza Vaccine Uptake N/A
Completed NCT03282240 - Safety and Immunogenicity of High-Dose Quadrivalent Influenza Vaccine in Participants ≥65 Years in the US Phase 3
Completed NCT00968539 - Study to Evaluate the Immunogenicity & Safety of an Investigational Influenza Vaccine (H1N1) in Adults Phase 3
Completed NCT00971425 - Evaluation of the Immune Response and the Safety of a Pandemic Influenza Candidate Vaccine (H1N1) Phase 3
Completed NCT00968526 - Study to Evaluate Immunogenicity and Safety of an Investigational Influenza Vaccine (H1N1) in Adults Phase 3
Completed NCT05525494 - Patient Portal Flu Vaccine Reminders (5) N/A
Completed NCT04074928 - Safety and Immunogenicity Study of QIVc in Healthy Pediatric Subjects Phase 3
Completed NCT04695717 - This Study Was Conducted to Evaluate the Safety and Immunogenicity of IVACFLU-S Produced in Children From 6 Months to Under 18 Years Old and the Elderly Over 60 Years Old in Vietnam Phase 3
Completed NCT05012163 - Lottery Incentive Nudges to Increase Influenza Vaccinations N/A
Completed NCT03888989 - Response to Influenza Vaccine During Pregnancy Phase 1
Completed NCT04109222 - Collection of Serum Samples From Children and Older Adults Receiving the 2019-2020 Formulations of Fluzone® Quadrivalent and Fluzone® High-Dose Influenza Vaccines, Respectively Phase 4
Completed NCT02587221 - Clinical Study to Evaluate the Efficacy, Safety and Immunogenicity of an MF59-Adjuvanted Quadrivalent Influenza Vaccine Compared to Non-influenza Vaccine Comparator in Adults ≥ 65 Years of Age Phase 3
Completed NCT03453801 - The Role of CD4+ Memory Phenotype, Memory, and Effector T Cells in Vaccination and Infection Phase 1
Completed NCT01440387 - A Study of Immunogenicity and Safety of GSK Biologicals' Influenza Vaccine FLU-Q-QIV in Adults Aged 18 Years and Older Phase 3
Terminated NCT01195779 - Trial to Evaluate Safety and Immunogenicity of GSK Biologicals' Influenza Vaccine GSK2584786A in Healthy Children Phase 2
Completed NCT03321968 - Lot-to-lot Consistency of a Plant-Derived Quadrivalent Virus-Like Particles Influenza Vaccine in Healthy Adults Phase 3
Completed NCT00972517 - Study to Evaluate the Immunogenicity and Safety of an Investigational Influenza Vaccine (H1N1) in Children Phase 3
Completed NCT04570904 - Broadening Our Understanding of Early Versus Late Influenza Vaccine Effectiveness
Recruiting NCT03331991 - Prevention of Influenza and Other Wintertime Respiratory Viruses Among Healthcare Professionals in Israel N/A