Clinical Trials Logo

Clinical Trial Summary

In this study, the pills formulated are being used to try to ameliorate the effect of air pollution on epigenetic changes, specifically DNA methylation, potentially linked with particulate matter air pollution inhalation and cardiovascular health effects. The way in which this is achieved is that the vitamins, which act as methyl donors, add a methyl group to the DNA to reverse the loss observed on exposure to air pollution.

Specifically for this study, the methyl donor supplement has been made by Jamieson Laboratories, and consists of 50mg Vitamin B6 and 1 mg Vitamin B12, (both within Health Canada approved limits) and 2.5 mg folic acid. The non-vitamin ingredients are those commonly used in pill formation. However, the folic acid concentration is 2.5mg, which is above the 1.0mg limit set by Health Canada for a natural health product. This concentration, however, has been used in previous academic studies safely and effectively, and was also formulated by Jamieson Laboratories. (ClinicalTrials.gov number, NCT00106886; Current Controlled Trials number, ISRCTN14017017. HOPE2 study).


Clinical Trial Description

Air pollution is a pervasive environmental threat estimated to cause ~800,000 deaths every year worldwide, mostly due to cardiovascular disease. This proposal addresses a fundamental mechanistic and pharmacologic question about effects of air pollution, which can most effectively be addressed through controlled human exposure experiments: does exposure have epigenetic effects that may have downstream subclinical or clinical consequences, and can adverse effects be safely reduced pharmacologically? Consistent evidence from in- vitro and human studies have shown that exposure to air particulate matter pollution (PM, i.e., fine particles) induces hypomethylation of the DNA, an epigenetic process that can underlie the activation of inflammatory genes and is postulated to link inhalation of PM into the lungs with cardiovascular inflammation and adverse responses. Our goal is to determine whether a pharmacological intervention with methyl-donors (i.e., folic acid, Vitamins B6 & B12, betaine, methionine, and choline) can avert this DNA methylation loss and mitigate the cardiovascular effects induced by PM exposure. The investigators will use experiments of human controlled exposure to PM - which reproduce conditions of exposure similar to those found in real life in urban environments - to conduct a double-blind, placebo-controlled crossover study. The investigators will test whether pharmacological intervention with methyl-donors attenuates the effects of PM exposure on DNA methylation (Aim 1), mRNA expression & plasma cytokines (Aim 2), and blood pressure, arterial vasoconstriction, endothelial function, and autonomic control of the heart (Aim 3). The investigators' study is poised to be the first human investigation to translate a wealth of animal data showing that methyl-donors can be used to modulate epigenetic states and avert environmental effects. The investigators have a unique opportunity to achieve this goal because we have access to one of the few facilities worldwide for human controlled-exposure studies, as well as to state-of-the-art resources for epigenetics investigations. The investigators will examine DNA methylation and mRNA expression in T-helper cells from human individuals, a cell type with key roles in determining adverse hypertensive and endothelial responses, as shown in several animal models. The investigators will test the effects of methyl-donors on a battery of cardiovascular endpoints that are highly sensitive to PM exposure. The investigators will explore the use of advanced statistical methods for mediation analyses to understand the relationships among PM, DNA methylation, RNA expression, plasma cytokines, and cardiovascular endpoints. The study will be conducted by an investigative team that has conducted seminal work in all of the research areas on which this proposal is built upon, including environmental epigenetics, cardiovascular effects of PM, and human controlled exposure studies. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01864824
Study type Interventional
Source Harvard School of Public Health
Contact
Status Completed
Phase Phase 1
Start date June 2013
Completion date July 2014

See also
  Status Clinical Trial Phase
Completed NCT03995979 - Inflammation and Protein Restriction N/A
Completed NCT03255187 - Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT03577223 - Egg Effects on the Immunomodulatory Properties of HDL N/A
Completed NCT04383561 - Relationship Between LRG and Periodontal Disease N/A
Active, not recruiting NCT03622632 - Pilot Study to Measure Uric Acid in Traumatized Patients: Determinants and Prognostic Association
Completed NCT06216015 - Exercise Training and Kidney Transplantation N/A
Completed NCT04856748 - Nomogram to Diagnose Prostatic Inflammation (PIN) in Men With Lower Urinary Tract Symptoms
Completed NCT05529693 - Efficacy of a Probiotic Strain on Level of Markers of Inflammation in an Elderly Population N/A
Recruiting NCT05415397 - Treating Immuno-metabolic Depression With Anti-inflammatory Drugs Phase 3
Recruiting NCT05670301 - Flemish Joint Effort for Biomarker pRofiling in Inflammatory Systemic Diseases N/A
Recruiting NCT04543877 - WHNRC (Western Human Nutrition Research Center) Fiber Intervention Study Early Phase 1
Recruiting NCT05775731 - Markers of Inflammation and of the Pro-thrombotic State in Hospital Shift and Day Workers
Completed NCT03859934 - Metabolic Effects of Melatonin Treatment Phase 1
Completed NCT03429920 - Effect of Fermented Soy Based Product on Cardiometabolic Risk Factors N/A
Completed NCT06065241 - Quantifiably Determine if the Botanical Formulation, LLP-01, Has a Significant Clinical Effect on Proteomic Inflammatory Biomarkers and Epigenetic Changes in Healthy, Older Individuals. N/A
Completed NCT05864352 - The Role of Dietary Titanium Dioxide on the Human Gut Microbiome and Health
Completed NCT03318731 - Efficacy and Safety of Fenugreek Extract on Markers of Muscle Damage and Inflammation in Untrained Males N/A
Not yet recruiting NCT06134076 - Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota N/A
Not yet recruiting NCT06159543 - The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes N/A