Clinical Trials Logo

Clinical Trial Summary

The time-lapse is a closed tri-gas incubator of the latest generation that provides optimal and stable culture conditions for the culture of embryos in In Vitro Fertilization (IVF). The integration of a camera within this incubator allows for continuous image capture, thus facilitating the monitoring of the entire embryonic development, from the day of fertilization to the moment of transfer into the uterus. The contribution of the time-lapse system allows an evaluation of the embryos not only by their morphology, but also by their cell division kinetics, both being direct markers of cell mechanics. Together, these morpho-kinetic data finally allow for the best identification of embryos with greater implantation potential. Time-lapse imaging represents a further step towards an objective assessment of the embryo, but inter- and intra-embryologist variations in annotations partly compromise this objectivity. In addition, many decision algorithms based on the evaluation of morpho-kinetic parameters have been developed, but the lack of reproducibility from one Assisted Reproductive Technology (ART) center to another is a hindrance to the generalization of any particular algorithm. The aim of this retrospective study is to determine morpho-kinetic factors predictive of implantation using machine learning and to link these factors to human embryo mechanistic properties.


Clinical Trial Description

The time-lapse is a closed tri-gas incubator of the latest generation that provides optimal and stable culture conditions for the culture of embryos in In Vitro Fertilization (IVF). The integration of a camera within this incubator allows for continuous image capture, thus facilitating the monitoring of the entire embryonic development, from the day of fertilization to the moment of transfer into the uterus. The contribution of the time-lapse system allows an evaluation of the embryos not only by their morphology, but also by their cell division kinetics, both being direct markers of cell mechanics. Together, these morpho-kinetic data finally allow for the best identification of embryos with greater implantation potential. Time-lapse imaging represents a further step towards an objective assessment of the embryo, but inter- and intra-embryologist variations in annotations partly compromise this objectivity. In addition, many decision algorithms based on the evaluation of morpho-kinetic parameters have been developed, but the lack of reproducibility from one Assisted Reproductive Technology (ART) center to another is a hindrance to the generalization of any particular algorithm. Machine learning is one of the main methods of data analysis that could define algorithms that are unbiased, more robust and applicable to all centers. But the optimal algorithm is not yet defined. Recently, an artificial intelligence approach applied to a large collection of time-lapse embryo images was developed to determine the embryo with the highest grade of evolution, with an AUC> 0.98. Using clinical data, the authors created a decision tree to integrate embryo quality and female age and identify the chances of pregnancy. However, this approach did not take into account the whole kinetics of development, focusing on certain particular stages, nor the influence of parental and extrinsic factors other than age. The aim of this retrospective study is to determine morpho-kinetic factors predictive of implantation and embryo development in IVF/ICSI using machine learning algorithms and relate these morpho-kinetic factors to the mechanical characteristics of cells. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06408389
Study type Observational
Source Assistance Publique - Hôpitaux de Paris
Contact Catherine PATRAT, MD,PhD
Phone 00 33 1 58 41 37 34
Email catherine.patrat@aphp.fr
Status Not yet recruiting
Phase
Start date June 2024
Completion date June 2027

See also
  Status Clinical Trial Phase
Completed NCT03607409 - Role of Inhibin A as Biomarker for Ovarian Response for IVF Treatment
Recruiting NCT02312076 - GnRHa for Luteal Phase Support in Long GnRHa Protocol Cycles Phase 4
Terminated NCT02161861 - Improvement of IVF Fertilization Rates, by the Cyclic Tripeptide FEE - Prospective Randomized Study N/A
Completed NCT03287479 - Comparison of a Semi-automated Closed Vitrification System (Gavi®) With a Manual Open Vitrification Sytem (Cryotop®) N/A
Terminated NCT03522350 - Randomized Trial Comparing EmbryoScope With EmbryoScope+. N/A
Completed NCT04496284 - Embryo Transfer Outcomes After Vitrification With Slush Nitrogen Compared to Liquid Nitrogen N/A
Completed NCT03623659 - pArtiaL zonA pelluciDa Removal by assisteD hatchINg of Blastocysts N/A
Completed NCT03895099 - New Ovarian Stimulation With Random Start, Use of Progestin Protocol for Oocyte Donors Phase 3
Active, not recruiting NCT04142112 - Randomized, Standard-Controlled, Study to Evaluate the Ohana IVF Sperm Preparation Kit, SPeRtility IVF Next Generation N/A
Completed NCT03152643 - Cumulative Live Birth Rates After Cleavage-stage Versus Blastocyst-stage Embryo Transfer N/A
Recruiting NCT03683771 - Assessment of Endometrial Pattern and Sub-endometrial Vascularity in ICSI Outcome
Recruiting NCT03161119 - Comparing Two Different Embryo Transfer Catheters N/A
Completed NCT04108039 - Micronized Progesterone vs Gonadotropin-releasing Hormone (GnRH) Antagonist in Freeze-all IVF Cycles. N/A
Completed NCT03677492 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Cytochalasin D ( ICSI-CD) N/A
Completed NCT03678610 - Handling Medium for ICSI With Ionomycin and Latrunculin A N/A
Completed NCT03678597 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Latrunculin B ( ICSI-LB) N/A
Completed NCT03678571 - Oocyte Vitrification Aided With Latrunculin A N/A
Completed NCT03678558 - Oocyte Vitrification Aided With Cytochalasin B N/A
Completed NCT03678584 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Chaetoglobosin A ( ICSI-CA) N/A
Completed NCT03678818 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Latrunculin A (ICSI-LA) N/A