Incomplete Spinal Cord Injury Clinical Trial
Official title:
Implementation of Locomotor Training Program Using a Powered Exoskeleton Combined With Functional Electrical Stimulation in Clinical Practice for Persons With an Incomplete Spinal Cord Injury - WHY and HOW to do it?
After partial spinal cord injury, gait deficits may be present and often remain even after intensive rehabilitation. New robotic technologies have recently emerged to help augment the extent of rehabilitation. However, these are complex tools to integrate into clinical practice and little is known about the potential factors that may influence the uptake of a locomotor program using this technology by clinicians. The goal of this project is to bring together researchers, administrators, clinicians and patients to define and implement an overground robotized gait training program in clinic. We will also investigate the added value of leg and trunk muscle stimulation combined with robotic walking training, to see if it could enhance recovery.
Powered exoskeleton technology represents a promising rehabilitation intervention for persons with incomplete spinal cord injury (iSCI). The overall aim of the present study is to investigate the implementability of an overground locomotor training program using a powered exoskeleton in persons with a subacute iSCI at the Institut de réadaptation en déficience physique de Québec, with and without functional electrical stimulation (FES). Over the 2-year period of the project, a logic model will be co-developed with stakeholders to support clinicians and administrators in the management of the locomotor training program. Using qualitative and quantitative research methods, we will evaluate the feasibility and perceived barriers/facilitators to the implementation in clinical practice of the training program. Finally, a pre-post design with individuals receiving the intervention either combined with FES or not, will allow quantifying of the benefits of combining FES in addition to robotic gait training on functional walking capacity in persons with a subacute iSCI. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04102826 -
Restoration of Arm Function in People With High-level Tetraplegia
|
N/A | |
Recruiting |
NCT04052009 -
Locomotor Training in Individuals With Incomplete Spinal Cord Injury. A Pilot Study
|
N/A | |
Completed |
NCT01302522 -
Mental Practice Impact on Gait and Cortical Organization in Spinal Cord Injury (SCI)
|
Phase 2 | |
Recruiting |
NCT05975606 -
Non-invasive Brain Stimulation Paired With FES Cycling Post SCI
|
N/A | |
Recruiting |
NCT04050696 -
The Use of Electromagnetic Field (EMF) Treatment in Chronic Spinal Cord Injury (SCI) Patients
|
N/A | |
Active, not recruiting |
NCT06079138 -
Tele-rehabilitation Using tDCS Combined With Exercise in People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05605912 -
Myosuit in Incomplete Spinal Cord Injury
|
N/A | |
Recruiting |
NCT06214546 -
Effect of Different Support Systems on Gait
|
N/A | |
Completed |
NCT04340063 -
Amplify Gait to Improve Locomotor Engagement in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05142943 -
Effectiveness of Virtual Bodily Illusion Intervention in Upper Limb Motor Function in People With Incomplete Spinal Cord Injury.
|
N/A | |
Enrolling by invitation |
NCT05341466 -
The Effect of Acute Intermittent Hypoxia on Motor Learning
|
N/A | |
Completed |
NCT04910412 -
Effects of tDCS With Gait Training on Leg Performance in Incomplete Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05726591 -
Evaluating Long-term Use of a Pediatric Robotic Exoskeleton (P.REX/Agilik) to Improve Gait in Children With Movement Disorders
|
N/A | |
Recruiting |
NCT03057652 -
Algorithmic-Based Evaluation and Treatment Approach for Robotic Gait Training
|
N/A | |
Recruiting |
NCT05429736 -
Activating Spinal Circuits to Improve Walking, Balance, Strength, and Reduce Spasticity
|
N/A | |
Completed |
NCT01851629 -
Walking Adaptability Post-Spinal Cord Injury
|
N/A | |
Recruiting |
NCT01961557 -
Evaluating a New Knee-Ankle-Foot Brace to Improve Gait in Children With Movement Disorders
|
N/A | |
Recruiting |
NCT04977037 -
A Telerehabilitation Program for SCI
|
N/A | |
Active, not recruiting |
NCT04809987 -
Effectiveness of Virtual Gait System Intervention in Motor Function in People With Incomplete Spinal Cord Injury.
|
N/A | |
Not yet recruiting |
NCT06169657 -
Comparison of Gait Training Methods in Sub-acute Stroke and Spinal Cord Injury
|