Idiopathic Pulmonary Fibrosis Clinical Trial
Official title:
Pulmonary Gas Exchange and Neuro-sensory Abnormalities in Patients With Idiopathic Pulmonary Fibrosis and Mild Mechanical Restriction. Implications for Dyspnea and Exercise Intolerance
Idiopathic Pulmonary Fibrosis (IPF) is a progressive lung disease marked by reduced exercise capacity and activity-related breathlessness (commonly termed dyspnea). Our previous work has shown that dyspnea during exercise is associated with an increased drive to breathe (inspiratory neural drive; IND). However, little work has been done to understand the mechanisms of exertional dyspnea in patients with mild IPF. The objectives of this study are to compare the acute effects of inhaled nitric oxide to placebo on ventilatory efficiency (VE/VCO2), and IND at rest and during a standard cardiopulmonary exercise test (CPET). Twenty patients with diagnosed IPF with mild (or absent) mechanical restriction and 20 healthy age- and sex-matched controls will be recruited from a database of volunteers and from the Interstitial Lung Disease and Respirology clinics at Hotel Dieu Hospital. Participants with cardiovascular, or any other condition that contributes to dyspnea or abnormal cardiopulmonary responses to exercise will be excluded. After giving written informed consent, all participants will complete 7 visits, conducted 2 to 7 days apart. Visit 1 (screening): medical history, pulmonary function testing and a symptom limited incremental CPET. Visit 2: Standard CT examination conducted at KGH Imaging. Visit 3: assessment of resting chemoreceptor sensitivity, followed by a symptom limited incremental CPET to determine peak work rate (Wmax). Visits 4 & 5 (run-in): familiarization to standardized constant work rate (CWR) CPET to symptom limitation at 75% Wmax. Visits 6 & 7 (Randomized & Blinded): CWR CPET to symptom limitation while breathing a gas mixture with either 1) 40 ppm iNO or 2) placebo [medical grade normoxic gas, 21% oxygen]. The proposed work has the potential to provide important physiological insights into the underlying mechanisms of heightened dyspnea, as well as examine therapeutic avenues to improve quality of life in patients with IPF.
Status | Recruiting |
Enrollment | 40 |
Est. completion date | February 28, 2025 |
Est. primary completion date | December 30, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 40 Years and older |
Eligibility | Inclusion criteria: - clinically stable, as defined by stable hemodynamic status, optimized medical treatment, no changes in medication dosage or frequency of administration with no hospital admissions in the preceding 6 weeks; - Mild or absent mechanical restriction as determined by a total lung capacity (TLC) >70% predicted; - male or female non-pregnant adults >40 years of age; - ability to perform all study procedures and provide informed consent. - A key IPF inclusion criterion includes, in addition to the above, a clinical diagnosis of idiopathic pulmonary fibrosis. Exclusion criteria: - women of childbearing potential who are pregnant or trying to become pregnant; - computed tomography evidence of any (significant) emphysema - evidence of airway obstruction (forced expiratory volume in 1 s/forced vital capacity <0.70, - active cardiopulmonary disease (other than IPF) or other comorbidities that could contribute to dyspnea and exercise limitation; - history/clinical evidence of asthma, atopy and/or nasal polyps; - currently taking phosphodiesterase type 5 inhibitors; - important contraindications to clinical exercise testing, including inability to exercise because of neuromuscular or musculoskeletal disease(s); - body mass index (BMI) <18.5 or =35.0 kg/m2; - use of daytime oxygen or exercise-induced O2 desaturation (<80% on room air). |
Country | Name | City | State |
---|---|---|---|
Canada | Respiratory Investigation Unit, Kingston General Hospital | Kingston | Ontario |
Lead Sponsor | Collaborator |
---|---|
Dr. Denis O'Donnell | Boehringer Ingelheim |
Canada,
Faisal A, Alghamdi BJ, Ciavaglia CE, Elbehairy AF, Webb KA, Ora J, Neder JA, O'Donnell DE. Common Mechanisms of Dyspnea in Chronic Interstitial and Obstructive Lung Disorders. Am J Respir Crit Care Med. 2016 Feb 1;193(3):299-309. doi: 10.1164/rccm.201504-0841OC. — View Citation
Farina S, Bruno N, Agalbato C, Contini M, Cassandro R, Elia D, Harari S, Agostoni P. Physiological insights of exercise hyperventilation in arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2018 May 15;259:178-182. doi: 10.1016/j.ijcard.2017.11.023. — View Citation
Kolb M, Raghu G, Wells AU, Behr J, Richeldi L, Schinzel B, Quaresma M, Stowasser S, Martinez FJ; INSTAGE Investigators. Nintedanib plus Sildenafil in Patients with Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018 Nov 1;379(18):1722-1731. doi: 10.1056/NEJMoa1811737. Epub 2018 Sep 15. — View Citation
Milne KM, Ibrahim-Masthan M, Scheeren RE, James MD, Phillips DB, Moran-Mendoza O, Ja N, O'Donnell DE. Inspiratory neural drive and dyspnea in interstitial lung disease: Effect of inhaled fentanyl. Respir Physiol Neurobiol. 2020 Nov;282:103511. doi: 10.1016/j.resp.2020.103511. Epub 2020 Aug 3. — View Citation
Nathan SD, Flaherty KR, Glassberg MK, Raghu G, Swigris J, Alvarez R, Ettinger N, Loyd J, Fernandes P, Gillies H, Kim B, Shah P, Lancaster L. A Randomized, Double-Blind, Placebo-Controlled Study of Pulsed, Inhaled Nitric Oxide in Subjects at Risk of Pulmonary Hypertension Associated With Pulmonary Fibrosis. Chest. 2020 Aug;158(2):637-645. doi: 10.1016/j.chest.2020.02.016. Epub 2020 Feb 21. — View Citation
Phillips DB, Brotto AR, Ross BA, Bryan TL, Wong EYL, Meah VL, Fuhr DP, van Diepen S, Stickland MK; Canadian Respiratory Research Network. Inhaled nitric oxide improves ventilatory efficiency and exercise capacity in patients with mild COPD: A randomized-control cross-over trial. J Physiol. 2021 Mar;599(5):1665-1683. doi: 10.1113/JP280913. Epub 2021 Jan 25. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Ventilatory efficiency (VE/VCO2) | Ventilatory efficiency will be measured by expired gas analysis. Measurements will be collected on a breath-by breath basis and compared with predicted values based on age and height. Three main time points will be evaluated: "rest" will be defined as the steady-state period after at least 3 minutes of breathing on the mouthpiece before exercise starts; "isotime" will be defined as the last 30-sec increment of each minute (i.e. 1-min, 2-min, 3-min) during the incremental exercise test and at 2 minutes (or the longest time achieved by all subjects) during the constant load exercise tests, and; "end-exercise" will be defined as the last 30-sec of loaded pedaling. | During exercise test on visit 4 and 5, every 1 minute, through end-exercise (average time 6-10minutes). | |
Primary | Inspiratory Neural Drive (IND) as measured by Diaphragmatic electromyography (EMGdi) | An esophageal electrode-balloon catheter consisting of 5 electrode pairs and two balloons, will be inserted nasally and positioned for optimal recoding. Electromyogram output of the diaphragm (used as an index of inspiratory neural drive to crural diaphragm or diaphragm activation; EMGdi) will be recorded continuously at rest and during exercise. Maximal EMGdi (EMGdi,max) will be determined from inspiratory capacity (IC) maneuvers. EMGdi/EMGdi,max will be used as an index of the inspiratory neural drive to the crural diaphragm. | During exercise test on visit 4 and 5, every 1 minute, through end-exercise (average time 6-10minutes). | |
Secondary | Dyspnea Intensity | Dyspnea (respiratory discomfort) will be defined as the "sensation of breathing discomfort" experienced at rest and during pedaling. Measurements will be made at rest (the steady-state period after at least 3 minutes of breathing on the mouthpiece before exercise starts), at two-minute intervals during exercise, and at end-exercise (at 2 minutes or the last 30-sec of loaded pedaling achieved by all the participants). The intensity (strength) of sensations will be rated using the modified 10-point Borg scale. | During exercise test on visit 4 and 5, every 1 minute, through end-exercise (average time 6-10minutes). |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05984992 -
The First-in-human Study of SRN-001 in Healthy Participants
|
Phase 1 | |
Active, not recruiting |
NCT04312594 -
Study of Jaktinib Hydrochloride Tablets in Participants With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Recruiting |
NCT03865927 -
GKT137831 in IPF Patients With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Completed |
NCT03979430 -
Early Detection of Acute Exacerbation in Patients With Idiopathic Lung Fibrosis - a Pilot Study
|
N/A | |
Enrolling by invitation |
NCT04905693 -
Extension Study of Inhaled Treprostinil in Subjects With Idiopathic Pulmonary Fibrosis
|
Phase 3 | |
Not yet recruiting |
NCT06241560 -
A Study in People With Idiopathic Pulmonary Fibrosis to Test Whether Pirfenidone Influences the Amount of BI 1015550 in the Blood
|
Phase 2 | |
Terminated |
NCT04419558 -
Zephyrus II: Efficacy and Safety Study of Pamrevlumab in Participants With Idiopathic Pulmonary Fibrosis (IPF)
|
Phase 3 | |
Completed |
NCT03725852 -
A Clinical Study to Test How Effective and Safe GLPG1205 is for Participants With Idiopathic Pulmonary Fibrosis (IPF)
|
Phase 2 | |
Terminated |
NCT03573505 -
An Efficacy and Safety Study of BG00011 in Participants With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Recruiting |
NCT04148157 -
Quality of Life in IPF - Patient and Physician Perceptions
|
||
Completed |
NCT03222648 -
Structured Exercise Training Programme in Idiopathic Pulmonary Fibrosis
|
N/A | |
Not yet recruiting |
NCT06422884 -
A Phase 2 Trial of ENV-101 in Patients With Lung Fibrosis (WHISTLE-PF Trial)
|
Phase 2 | |
Completed |
NCT02257177 -
RCT (Randomized Control Trial) of TD139 vs Placebo in HV's (Human Volunteers) and IPF Patients
|
Phase 1/Phase 2 | |
Completed |
NCT02268981 -
Effects of an Oxymizer® During Daytime in Patients With Pulmonary Fibrosis (IPF)
|
N/A | |
Withdrawn |
NCT01524068 -
A MultiCenter Study of Combined PEX, Rituximab, and Steroids in Acute Idiopathic Pulmonary Fibrosis Exacerbations
|
Phase 2 | |
Enrolling by invitation |
NCT01382368 -
Acute Effect of Sildenafil on Exercise Tolerance and Functional Capacity in COPD, IPF and Post Pneumonectomy Patients
|
Phase 4 | |
Completed |
NCT01199887 -
Trial Of IW001 in Patients With Idiopathic Pulmonary Fibrosis
|
Phase 1 | |
Completed |
NCT01110694 -
Prospective Observation of Fibrosis in the Lung Clinical Endpoints Study
|
||
Active, not recruiting |
NCT02951416 -
Clinical Course of Interstitial Lung Diseases: European IPF Registry and Biobank
|
||
Terminated |
NCT00981747 -
Targeting Vascular Reactivity in Idiopathic Pulmonary Fibrosis
|
Phase 2/Phase 3 |