Idiopathic Pulmonary Fibrosis Clinical Trial
Official title:
Pulmonary Gas Exchange and Neuro-sensory Abnormalities in Patients With Idiopathic Pulmonary Fibrosis and Mild Mechanical Restriction. Implications for Dyspnea and Exercise Intolerance
Idiopathic Pulmonary Fibrosis (IPF) is a progressive lung disease marked by reduced exercise capacity and activity-related breathlessness (commonly termed dyspnea). Our previous work has shown that dyspnea during exercise is associated with an increased drive to breathe (inspiratory neural drive; IND). However, little work has been done to understand the mechanisms of exertional dyspnea in patients with mild IPF. The objectives of this study are to compare the acute effects of inhaled nitric oxide to placebo on ventilatory efficiency (VE/VCO2), and IND at rest and during a standard cardiopulmonary exercise test (CPET). Twenty patients with diagnosed IPF with mild (or absent) mechanical restriction and 20 healthy age- and sex-matched controls will be recruited from a database of volunteers and from the Interstitial Lung Disease and Respirology clinics at Hotel Dieu Hospital. Participants with cardiovascular, or any other condition that contributes to dyspnea or abnormal cardiopulmonary responses to exercise will be excluded. After giving written informed consent, all participants will complete 7 visits, conducted 2 to 7 days apart. Visit 1 (screening): medical history, pulmonary function testing and a symptom limited incremental CPET. Visit 2: Standard CT examination conducted at KGH Imaging. Visit 3: assessment of resting chemoreceptor sensitivity, followed by a symptom limited incremental CPET to determine peak work rate (Wmax). Visits 4 & 5 (run-in): familiarization to standardized constant work rate (CWR) CPET to symptom limitation at 75% Wmax. Visits 6 & 7 (Randomized & Blinded): CWR CPET to symptom limitation while breathing a gas mixture with either 1) 40 ppm iNO or 2) placebo [medical grade normoxic gas, 21% oxygen]. The proposed work has the potential to provide important physiological insights into the underlying mechanisms of heightened dyspnea, as well as examine therapeutic avenues to improve quality of life in patients with IPF.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease characterized by bi-basilar sub-pleural honeycombing, septal thickening, and traction bronchiectasis. Patients with IPF, even in mild cases, have a reduced exercise capacity which is strongly associated with exertional breathlessness (dyspnea). Our previous work in IPF has shown that dyspnea during exercise is associated with increased inspiratory neural drive (IND) compared with healthy controls. High IND, in turn, is related to a combination of 1) reduced ventilatory efficiency (i.e. increased ventilation relative to carbon dioxide production (V̇E/V̇CO2)); 2) abnormal dynamic breathing mechanics (blunted tidal volume (VT) and critically low inspiratory reserve volume (IRV)), especially in more advanced disease, and; 3) impaired pulmonary gas-exchange (i.e. diffusion limitation and arterial hypoxemia). Preliminary work from our laboratory in patients with IPF but only mild restriction (total lung capacity (TLC) >70% predicted) demonstrated elevated IND and dyspnea during exercise, when compared to healthy age- and sex-matched controls. The increased IND appeared to be largely the result of the excess ventilation (high V̇E/V̇CO2), as dynamic respiratory mechanics (VT and operating lung volumes) during exercise were similar to healthy controls, when accounting for ventilation. Importantly, these patients showed only minor decreases in arterial O2 saturation. These data suggest that patients with mild forms of IPF have significant exertional dyspnea, secondary to reduced ventilatory efficiency (high V̇E/V̇CO2), although the exact mechanisms of elevated V̇E/V̇CO2 in mild IPF remains unclear. Increased chemosensitivity has been linked to elevated V̇E/V̇CO2 in cardiopulmonary diseases. It is reasonable to postulate that persistent V̇A/Q̇ mismatch with elevated total physiological dead space and possible sympathetic over-excitation may alter central medullary chemoreceptor characteristics in patients with IPF, at least partially explaining elevated exercise V̇E/V̇CO2. Pulmonary microvascular abnormalities may also be a key contributor to the increased dead space and V̇E/V̇CO2 during exercise in IPF. Patients with IPF and mild mechanical restriction have relatively preserved gas transfer between the alveoli and capillaries, even in fibrotic lung regions with interstitial thickening. This suggests that regional capillary hypoperfusion in IPF with mild restriction, despite a relatively preserved alveolar-capillary interface, may lead to V̇A/Q̇ mismatch (specifically an increased proportion of high V̇A/Q̇ lung units), which would increase total physiologic dead space and V̇E/V̇CO2. The relative contribution of increased chemosensitivity and/or pulmonary microvascular abnormalities to elevated exercise V̇E/V̇CO2 in patients mild IPF has not been determined and are the primary focus of this study. Treatment options for dyspnea management in IPF are limited. Recent work from the INSTAGE trial showed that a combination of nintedanib (anti-fibrotic) and sildenafil (pulmonary vasodilator) showed minimal improvement in dyspnea. However, improvements in physical activity and gas-exchange in patients with IPF following 8-week treatment of inhaled nitric oxide (iNO), a selective pulmonary vasodilator have been demonstrated in other, more recent studies. Since patients with mild forms of IPF are thought to have a relatively intact capillary bed but a relatively high physiological dead space due to attenuation of regional pulmonary perfusion, inhaled selective vasodilation may be more beneficial than in advanced disease with fixed microvascular destruction. This is supported by recent work demonstrating a reduced V̇E/V̇CO2 (reflecting a decrease in physiological dead space) and dyspnea during exercise in patients with mild chronic obstructive pulmonary disease with minimal or no emphysema. Importantly, arterial O2 saturation was normal throughout exercise and unaffected by iNO, which suggests no deleterious effects of iNO on overall gas-exchange. The reduction in V̇E/V̇CO2 during exercise with iNO suggests that iNO increases pulmonary microvascular perfusion heterogeneity, leading to improved V̇A/Q̇ matching, reduced dead space and therefore a lower ventilation for a given metabolic demand. As an exploratory outcome, we will determine whether iNO improves V̇A/Q̇ and reduces dead space and attendant dyspnea, in patients with IPF and mild mechanical restriction. Moreover, this would clearly establish if partially reversible vascular dysfunction contributes to V̇A/Q̇ mismatch, elevated V̇E/V̇CO2, inspiratory neural drive and dyspnea exists in non-hypoxemic patients with IPF and minimal mechanical abnormalities. Rationale: It has been well established that patients with advanced IPF have mechanical and pulmonary gas exchange abnormalities which require compensatory increases in inspiratory neural drive and an exaggerated ventilatory response to exercise with consequent increase in activity-related dyspnea. However, very little work has been done to understand mechanisms of exertional dyspnea in patients IPF in whom restrictive mechanics and hypoxemia are not prominent. The proposed work has the potential to not only provide important physiological insight into the underlying mechanisms for increased V̇E/V̇CO2 and inspiratory neural drive, but also to examine therapeutic avenues to improve ventilatory efficiency, dyspnea, exercise capacity and ultimately quality of life in patients with IPF. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05984992 -
The First-in-human Study of SRN-001 in Healthy Participants
|
Phase 1 | |
Active, not recruiting |
NCT04312594 -
Study of Jaktinib Hydrochloride Tablets in Participants With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Recruiting |
NCT03865927 -
GKT137831 in IPF Patients With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Completed |
NCT03979430 -
Early Detection of Acute Exacerbation in Patients With Idiopathic Lung Fibrosis - a Pilot Study
|
N/A | |
Enrolling by invitation |
NCT04905693 -
Extension Study of Inhaled Treprostinil in Subjects With Idiopathic Pulmonary Fibrosis
|
Phase 3 | |
Not yet recruiting |
NCT06241560 -
A Study in People With Idiopathic Pulmonary Fibrosis to Test Whether Pirfenidone Influences the Amount of BI 1015550 in the Blood
|
Phase 2 | |
Terminated |
NCT04419558 -
Zephyrus II: Efficacy and Safety Study of Pamrevlumab in Participants With Idiopathic Pulmonary Fibrosis (IPF)
|
Phase 3 | |
Completed |
NCT03725852 -
A Clinical Study to Test How Effective and Safe GLPG1205 is for Participants With Idiopathic Pulmonary Fibrosis (IPF)
|
Phase 2 | |
Terminated |
NCT03573505 -
An Efficacy and Safety Study of BG00011 in Participants With Idiopathic Pulmonary Fibrosis
|
Phase 2 | |
Recruiting |
NCT04148157 -
Quality of Life in IPF - Patient and Physician Perceptions
|
||
Completed |
NCT03222648 -
Structured Exercise Training Programme in Idiopathic Pulmonary Fibrosis
|
N/A | |
Not yet recruiting |
NCT06422884 -
A Phase 2 Trial of ENV-101 in Patients With Lung Fibrosis (WHISTLE-PF Trial)
|
Phase 2 | |
Completed |
NCT02257177 -
RCT (Randomized Control Trial) of TD139 vs Placebo in HV's (Human Volunteers) and IPF Patients
|
Phase 1/Phase 2 | |
Completed |
NCT02268981 -
Effects of an Oxymizer® During Daytime in Patients With Pulmonary Fibrosis (IPF)
|
N/A | |
Withdrawn |
NCT01524068 -
A MultiCenter Study of Combined PEX, Rituximab, and Steroids in Acute Idiopathic Pulmonary Fibrosis Exacerbations
|
Phase 2 | |
Enrolling by invitation |
NCT01382368 -
Acute Effect of Sildenafil on Exercise Tolerance and Functional Capacity in COPD, IPF and Post Pneumonectomy Patients
|
Phase 4 | |
Completed |
NCT01199887 -
Trial Of IW001 in Patients With Idiopathic Pulmonary Fibrosis
|
Phase 1 | |
Completed |
NCT01110694 -
Prospective Observation of Fibrosis in the Lung Clinical Endpoints Study
|
||
Active, not recruiting |
NCT02951416 -
Clinical Course of Interstitial Lung Diseases: European IPF Registry and Biobank
|
||
Terminated |
NCT00981747 -
Targeting Vascular Reactivity in Idiopathic Pulmonary Fibrosis
|
Phase 2/Phase 3 |