Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to determine if taking iron supplement pills improves exercise performance in low-oxygen conditions.


Clinical Trial Description

Hypoxia (low oxygen) causes the blood vessels in the lungs to constrict (hypoxic pulmonary vasoconstriction). This increases the pressure (afterload) the right ventricle faces as it pumps blood to the lungs. Increased right ventricular afterload during hypoxia may compromise exercise capacity. Intravenous iron administration prior to hypoxic exposure has been shown to blunt the hypoxia-induced increase in right ventricular afterload. This may be through iron's action in the Hypoxia Inducible Factor (HIF) pathway. Iron is a cofactor for prolyl hydroxylases that degrade HIF subunits and thus may "turn off" HIF-related pathways of pulmonary artery vasoconstriction and remodeling. However, it is not known whether oral iron supplementation similarly reduces right ventricular afterload in hypoxia, or what impact iron has on right ventricular function and exercise capacity in hypoxia. This is a human physiology study that will characterize the impact of oral iron supplementation on right ventricular function and exercise performance in hypoxia. It is a follow-up "sub-study" to a separate, "parent" study (NCT05272514) by the same investigators which evaluates resting and exertional right ventricular performance in normoxia and hypoxia in 10 healthy individuals. In this follow-up study, 5 individuals who completed the parent study will be eligible to enroll. As part of the parent study, participants will complete baseline echocardiography to assess right ventricular function and cardiopulmonary exercise testing to assess exercise performance in normoxia and hypoxia. After enrolling in this study, participants will take an oral iron supplement (ferrous sulfate 325 mg oral daily) for 30 days. They will then return for one visit. First, participants will complete submaximal exercise while breathing room air. Submaximal exercise will include 5 minutes each at 40% and 60% of baseline hypoxic (fraction of inspired oxygen [FiO2] 12%) maximal oxygen uptake (VO2max) achieved during parent study. After 10 minutes' rest, echocardiographic measurements will be obtained at upright rest with FiO2 21%, 17%, 15%, and 12% to characterize the impact of progressive hypoxia on resting right ventricular function. Participants will then repeat submaximal exercise tests at FiO2 12%, followed by a short period of recovery. Thereafter, participants will complete a symptom-limited cardiopulmonary exercise test at FiO2 12%. Measurements will include heart rate/rhythm, oxygen saturation, blood pressure, gas exchange parameters (oxygen uptake [VO2], carbon dioxide production [VCO2], and minute ventilation), rated perceived exertion and resting echocardiographic measurements. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05349630
Study type Interventional
Source University of Colorado, Denver
Contact William Cornwell, MD
Phone 303-724-2085
Email william.cornwell@cuanschutz.edu
Status Not yet recruiting
Phase Early Phase 1
Start date February 2024
Completion date September 2024

See also
  Status Clinical Trial Phase
Recruiting NCT04498598 - Structural Modification In Supraglottic Airway Device N/A
Completed NCT05532670 - N600X Low Saturation Accuracy Validation
Enrolling by invitation NCT04106401 - Intravascular Volumes in Hypoxia During Antarctic Confinement N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Not yet recruiting NCT05817448 - Hypoxia-induced Autophagy in the Pathogenesis of MAP
Recruiting NCT02661152 - DAHANCA 30: A Randomized Non-inferiority Trial of Hypoxia-profile Guided Hypoxic Modification of Radiotherapy of HNSCC. Phase 3
Terminated NCT02801162 - Evaluation of Accuracy and Precision of a New Arterial Blood Gas Analysis System Blood in Comparison With the Reference Standard N/A
Completed NCT02943863 - Regional Ventilation During High Flow Nasal Cannula and Conventional Nasal Cannula in Patients With Hypoxia N/A
Not yet recruiting NCT02201875 - Intrinsic Periodic Pattern of Breathing N/A
Completed NCT01922401 - Inverse Ratio Ventilation on Bariatric Operation N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Active, not recruiting NCT01681238 - Goal-directed Therapy in High-risk Surgery N/A
Completed NCT01463527 - Using Capnography to Reduce Hypoxia During Pediatric Sedation N/A
Completed NCT01507623 - Value of Capnography During Nurse Administered Propofol Sedation (NAPS) N/A
Withdrawn NCT00638040 - The Gene Expression Studies of the Role of Tumor Microenvironments in Tumor Progression N/A
Active, not recruiting NCT06097754 - Intermittent Exogenous Ketosis (IEK) at High Altitude N/A
Completed NCT04589923 - The VISION-Acute Study
Completed NCT05044585 - Evaluation of RDS MultiSense® in Desaturation Analysis in Healthy Volunteers N/A
Completed NCT03659513 - The Effect of ECMO on the Pharmacokinetics of the Drugs and Their Clinical Efficacy
Completed NCT03221387 - Sleep and Daytime Use of Humidified Nasal High-flow Oxygen in COPD Outpatients N/A