Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to evaluate whether or not an MRI technique (quantitative magnetization transfer or qMT) in narrowing human kidneys is feasible, reproducible, and predicts recovery.


Clinical Trial Description

Renal fibrosis is a final pathway and important biomarker of injury common to most forms of kidney disease. For example, in renal vascular disease (RVD) progressive renal fibrosis may induce kidney injury and hypertension. Early identification of fibrosis and adequate intervention may slow down renal disease progression, but adequate noninvasive strategies to detect and quantify renal fibrosis are yet to be identified. Magnetization transfer imaging (MTI) magnetic resonance imaging (MRI) is a novel noninvasive method to evaluate the tissue macromolecular composition. The investigators have demonstrated that MTI can assess stenotic kidney fibrosis in murine and swine models of unilateral RVD. However, the clinical utility of MT-MRI to assess renal fibrosis is currently limited, because it is inherently semi-quantitative. In contrast, quantitative MT (qMT), based on biophysical compartment models, provides more objective measurement of tissue MT properties. A model fitting of MR signal acquired with various MT pulse amplitudes and offset frequencies, combined with scan-specific B0/B1/T1 maps, give rise to a more complete definition of tissue parameters, including a "bound pool fraction", a direct measure of the macromolecular content in tissue. The hypothesis underlying this proposal is that qMT would reliably detect development of renal fibrosis at both 1.5 T and 3.0 T in subjects with RVD. To test this hypothesis, which is supported by strong preliminary data, the investigators will initially develop, optimize, and validate qMT for evaluation of fibrosis in the post-stenotic swine kidney. The investigators will correlate qMT-derived renal fibrosis with reference standards, as well as with single-kidney hemodynamics, function, and oxygenation, quantified using cutting-edge multi-detector CT (MDCT) and MRI techniques. The investigators will then determine the ability of qMT to predict renal recovery in pigs with RVD undergoing revascularization. Further, they will perform a pilot study to test the ability of qMT to quantify fibrosis in the post-stenotic human kidney, in comparison to innovative biomarkers of renal dysfunction and tissue damage. Three specific aims will test the hypotheses: Specific Aim 1: qMT in stenotic swine kidneys is feasible, reliable, and reproducible at 1.5 and 3.0 T. Specific Aim 2: qMT predicts renal recovery potential in response to percutaneous transluminal renal angioplasty (PTRA). Specific Aim 3: qMT in stenotic human kidneys is feasible, reproducible, and predicts recovery. The proposed studies may therefore establish a reliable, noninvasive, and clinically feasible strategy to quantify kidney fibrosis, a key biomarker for renal outcomes and therapeutic success. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04508049
Study type Interventional
Source Mayo Clinic
Contact Steph DiRenzo
Phone 507-422-2044
Email DiRenzo.Stephany@mayo.edu
Status Recruiting
Phase N/A
Start date October 1, 2020
Completion date September 2025

See also
  Status Clinical Trial Phase
Terminated NCT04591808 - Efficacy and Safety of Atorvastatin + Perindopril Fixed-Dose Combination S05167 in Adult Patients With Arterial Hypertension and Dyslipidemia Phase 3
Recruiting NCT04515303 - Digital Intervention Participation in DASH
Completed NCT05433233 - Effects of Lifestyle Walking on Blood Pressure in Older Adults With Hypertension N/A
Completed NCT05491642 - A Study in Male and Female Participants (After Menopause) With Mild to Moderate High Blood Pressure to Learn How Safe the Study Treatment BAY3283142 is, How it Affects the Body and How it Moves Into, Through and Out of the Body After Taking Single and Multiple Doses Phase 1
Completed NCT03093532 - A Hypertension Emergency Department Intervention Aimed at Decreasing Disparities N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT05529147 - The Effects of Medication Induced Blood Pressure Reduction on Cerebral Hemodynamics in Hypertensive Frail Elderly
Recruiting NCT05976230 - Special Drug Use Surveillance of Entresto Tablets (Hypertension)
Recruiting NCT06363097 - Urinary Uromodulin, Dietary Sodium Intake and Ambulatory Blood Pressure in Patients With Chronic Kidney Disease
Completed NCT06008015 - A Study to Evaluate the Pharmacokinetics and the Safety After Administration of "BR1015" and Co-administration of "BR1015-1" and "BR1015-2" Under Fed Conditions in Healthy Volunteers Phase 1
Completed NCT05387174 - Nursing Intervention in Two Risk Factors of the Metabolic Syndrome and Quality of Life in the Climacteric Period N/A
Completed NCT04082585 - Total Health Improvement Program Research Project
Recruiting NCT05121337 - Groceries for Black Residents of Boston to Stop Hypertension Among Adults Without Treated Hypertension N/A
Withdrawn NCT04922424 - Mechanisms and Interventions to Address Cardiovascular Risk of Gender-affirming Hormone Therapy in Trans Men Phase 1
Active, not recruiting NCT05062161 - Sleep Duration and Blood Pressure During Sleep N/A
Not yet recruiting NCT05038774 - Educational Intervention for Hypertension Management N/A
Completed NCT05087290 - LOnger-term Effects of COVID-19 INfection on Blood Vessels And Blood pRessure (LOCHINVAR)
Completed NCT05621694 - Exploring Oxytocin Response to Meditative Movement N/A
Completed NCT05688917 - Green Coffee Effect on Metabolic Syndrome N/A
Recruiting NCT05575453 - OPTIMA-BP: Empowering PaTients in MAnaging Blood Pressure N/A