Clinical Trials Logo

Hydrocortisone clinical trials

View clinical trials related to Hydrocortisone.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05818826 Recruiting - Septic Shock Clinical Trials

Early Versus Conventional Cessation of Hydrocortisone in Septic Shock

CESSHYDRO
Start date: July 5, 2023
Phase: Phase 2
Study type: Interventional

Septic shock is one of the causes of death in ICU and hospital. Refractory shock is the problem which healthcare providers should recognize though it is difficult to handle with. The corticosteroid called hydrocortisone is one of the treatment in refractory septic shock which requires vasopressor to maintain blood pressure. In recovery phase of septic shock and weaning off vasopressor, there is no definite way to taper off hydrocortisone.

NCT ID: NCT05160506 Recruiting - Pancreatitis Clinical Trials

Corticosteroids to Treat Pancreatitis

CRISP
Start date: March 6, 2022
Phase: Phase 2
Study type: Interventional

This research is being done to determine if the administration of a short course of intravenous hydrocortisone, an anti-inflammatory medication, to patients with severe acute pancreatitis will improve their clinical outcomes and decrease the length of hospitalization. We think that because inflammation in the body drives the progression of pancreatitis, giving a short course of intravenous hydrocortisone may mitigate disease progression and improve clinical outcomes in patients with severe acute pancreatitis.

NCT ID: NCT03896659 Recruiting - Depression Clinical Trials

Exploring the Effects of Corticosteroids on the Human Hippocampus

Start date: October 1, 2019
Phase: Phase 4
Study type: Interventional

Chronic corticosteroid (CS) exposure is associated with changes in memory and the hippocampus in both humans and in animal models. The hippocampus has a high concentration of glucocorticoid receptors (GCRs), and the pre-clinical literature demonstrates shortening of apical dendrites in the CA3 region of the hippocampus and decreased neurogenesis in the dentate gyrus (DG) following CS administration. In humans, both stress and CS exposure are associated with a decline in declarative memory performance (a process mediated by the hippocampus). Impairment in declarative memory and hippocampal atrophy are reported in patients with excessive CS release due to Cushing's disease, and, by our group, in patients receiving prescription CS therapy. These findings have important implications for patients with mood disorders, as a large subset of people with major depressive disorder (MDD) show evidence of HPA axis activation, elevated cortisol and, importantly, resistance to the effects of CSs on both the HPA axis and on declarative memory. Thus, resistance to corticosteroids appears to be a consequence of MDD. this study will examine changes in declarative memory, as well as use state-of-the-art high-resolution multimodal neuroimaging, including structural and functional (i.e., task-based and resting state) MRI, in both men and women healthy controls, and, as an exploratory aim, a depressed group, given 3-day exposures to hydrocortisone (160 mg/day) or placebo. The study will translate preclinical findings to humans, provide valuable data on possible sex differences in the response to cortisol and, for the first time, identify specific hippocampal subfields (e.g., CA3/DG) in humans that are most sensitive to acute CS effects. Using resting state fMRI data and whole brain connectomics using graph theoretical approaches, we will determine the effects of cortisol exposure on functional brain networks. Furthermore, this will be the first study to use neuroimaging to compare the brain's response to CSs in people with depression vs. controls, and determine whether depressed people demonstrate glucocorticoid resistance within the hippocampus. We hypothesize that hippocampal response to acute CSs will be greatest in the CA3/DG subfield, greater in women than in men, and that depressed people will show a blunted hippocampal response to CSs compared to controls. A multidisciplinary research team with extensive experience in CS effects on the brain and hippocampal subfield neuroimaging, and a prior history of research collaboration, will conduct the project.