Clinical Trials Logo

Hepatoblastoma clinical trials

View clinical trials related to Hepatoblastoma.

Filter by:

NCT ID: NCT04315883 Recruiting - Clinical trials for Hepatocellular Carcinoma

Yttrium-90 (TARE-Y90) in Children, Adolescents, and Young Adults With Liver Tumors

Start date: February 11, 2021
Phase:
Study type: Observational

This study will be performed to evaluate the Clinical Outcomes and Quality of Life after Transarterial Radioembolization with Yttrium-90 (TARE-Y90) in Children, Adolescents, and Young Adults with Liver Tumors. The treatment and techniques used here are well established in adults. The purpose of this study is to evaluate: 1. the response to treatment and clinical outcomes of treatment with TARE Y-90 as part of standard therapy and 2. to assess the change in the patient's quality of life before, during and after treatment with TARE-Y90

NCT ID: NCT04308330 Recruiting - Neuroblastoma Clinical Trials

Vorinostat in Combination With Chemotherapy in Relapsed/Refractory Solid Tumors and CNS Malignancies

NYMC195
Start date: March 17, 2017
Phase: Phase 1
Study type: Interventional

Investigators are testing new experimental drug combinations such as the combination of vorinostat, vincristine, irinotecan, and temozolomide in the hopes of finding a drug that may be effective against tumors that have come back or that have not responded to standard therapy. The goals of this study are: - To find the highest safe dose of vorinostat that can be given together with vincristine, irinotecan, and temozolomide without causing severe side effects; - To learn what kind of side effects this four drug combination can cause; - To learn about the effects of vorinostat and the combination of vorinostat, vincristine, irinotecan, and temozolomide on specific molecules in tumor cells; - To determine whether the combination of vorinosat, vincristine, irinotecan, and temozolomide is a beneficial treatment.

NCT ID: NCT03959800 Recruiting - Clinical trials for Hepatocellular Carcinoma

Molecular Basis of Pediatric Liver Cancer

Start date: June 22, 2015
Phase:
Study type: Observational

The purpose of this retrospective and prospective project is to understand the molecular and genetic basis of liver cancer of childhood. Understanding the molecular and genetic bases of liver cancers can offer a better classification based on tumor biology, mechanisms and predisposition.

NCT ID: NCT03618381 Recruiting - Neuroblastoma Clinical Trials

EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Start date: June 18, 2019
Phase: Phase 1
Study type: Interventional

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

NCT ID: NCT03213652 Recruiting - Clinical trials for Malignant Solid Neoplasm

Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Start date: April 17, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

NCT ID: NCT02933333 Recruiting - Lymphoma Clinical Trials

G-CSF Alone or Combination With GM-CSF on Prevention and Treatment of Infection in Children With Malignant Tumor

Start date: September 27, 2016
Phase: Phase 4
Study type: Interventional

The purpose of this study is to explore the effect of G-CSF combination with GM-CSF on prevention and treatment of infection in children with malignant tumor.

NCT ID: NCT02557750 Recruiting - Hepatoblastoma Clinical Trials

Combined Modality Therapy in Hepatoblastoma: South Egypt Cancer Institute Experience

Start date: January 2016
Phase:
Study type: Observational

The aim of this study is to retrospectively investigate the effect of combined modality treatment of pediatric hepatoblastoma and the factors affecting the prognosis in accordance with the experience at the pediatric oncology department at South Egypt Cancer Institute.

NCT ID: NCT00179816 Recruiting - Soft Tissue Sarcoma Clinical Trials

Tandem Peripheral Blood Stem Cell (PBSC) Rescue for High Risk Solid Tumors

Start date: April 1999
Phase: Phase 1/Phase 2
Study type: Interventional

This study uses a double autologous peripheral blood stem cell rescue (PBSC) following dose-intensive chemotherapy for the treatment of high-risk pediatric solid tumors.